Hodge Theory
   HOME





Hodge Theory
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings—Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cup Product
In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p+q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H^*(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944. Definition In singular cohomology, the cup product is a construction giving a product on the graded cohomology ring H^*(X) of a topological space X. The construction starts with a product of cochains: if \alpha^p is a p-cochain and \beta^q is a q-cochain, then :(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_) \cdot \beta^q(\sigma \circ \iota_) where \sigma is a singular (p+q)- simplex and \iota_S , S \subset \ is the canonical embeddi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wedge Product
A wedge is a triangular shaped tool, a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular ( normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width..''McGraw-Hill Concise Encyclopedia of Science & Technology'', Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, p. 2041. Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle. The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported. The wedge simply transports energy in the form of friction and collects it to the pointy end, consequently breaking the item. History Wedges have existed fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernhard Riemann
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Early years Riemann was born on 17 September 1826 in Breselenz, a village near Danne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solomon Lefschetz
Solomon Lefschetz (; 3 September 1884 – 5 October 1972) was a Russian-born American mathematician who did fundamental work on algebraic topology, its applications to algebraic geometry, and the theory of non-linear ordinary differential equations. Life He was born in Moscow, the son of Alexander Lefschetz and his wife Sarah or Vera Lifschitz, Jewish traders who used to travel around Europe and the Middle East (they held Ottoman passports). Shortly thereafter, the family moved to Paris. He was educated there in engineering at the École Centrale Paris, but emigrated to the US in 1905. He was badly injured in an industrial accident in 1907, losing both hands. He moved towards mathematics, receiving a Ph.D. in algebraic geometry from Clark University in Worcester, Massachusetts in 1911. He then took positions in University of Nebraska and University of Kansas, moving to Princeton University in 1924, where he was soon given a permanent position. He remained there until 1953. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Pairing
In mathematics, a pairing is an ''R''-bilinear map from the Cartesian product of two ''R''- modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R''-modules. A pairing is any ''R''-bilinear map e:M \times N \to L. That is, it satisfies :e(r\cdot m,n)=e(m,r \cdot n)=r\cdot e(m,n), :e(m_1+m_2,n)=e(m_1,n)+e(m_2,n) and e(m,n_1+n_2)=e(m,n_1)+e(m,n_2) for any r \in R and any m,m_1,m_2 \in M and any n,n_1,n_2 \in N . Equivalently, a pairing is an ''R''-linear map :M \otimes_R N \to L where M \otimes_R N denotes the tensor product of ''M'' and ''N''. A pairing can also be considered as an ''R''-linear map \Phi : M \to \operatorname_ (N, L) , which matches the first definition by setting \Phi (m) (n) := e(m,n) . A pairing is called perfect if the above map \Phi is an isomorphism of ''R''-modules and the other evaluation map \Phi'\colon N\to \operatorname_(M,L) is an isomorphism al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

École Polytechnique Fédérale De Lausanne
The École Polytechnique Fédérale de Lausanne (, EPFL) is a public university, public research university in Lausanne, Switzerland, founded in 1969 with the mission to "train talented engineers in Switzerland". Like its sister institution ETH Zurich, EPFL is part of the ETH Domain, Swiss Federal Institutes of Technology Domain which groups several universities and research institutes under the Federal Department of Economic Affairs, Education and Research. As of 2024, EPFL enrolled 14,012 students from over 130 countries. EPFL has an Lausanne campus, urban campus that extends alongside Lake Geneva, and includes the Swiss Innovation Park, EPFL Innovation Park as well as university research centers and affiliated laboratories. History The roots of modern-day EPFL can be traced back to the foundation of a private school under the name ''École spéciale de Lausanne'' in 1853 at the initiative of Louis Rivier, a graduate of the and John Gay, the then professor and rector ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the simplex, standard -simplex to a topological space, and composing them into Free abelian group#Integer functions and formal sums, formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n-1)-dimensional boundary operator, boundary – induces the singular chain complex. The singular homology is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stokes' Theorem
Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls, or simply the curl theorem, is a theorem in vector calculus on \R^3. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: : The line integral of a vector field over a loop is equal to the surface integral of its '' curl'' over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. In particular, a vector field on \R^3 can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form. Theorem Let \Sigma be a smooth oriented surface in \R^3 with boundary \partial \Sigma \equiv \Gamma . If a vector field \mathbf(x,y,z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z)) is defined and has continuous first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology. Life Élie Cartan was born 9 April 1869 in the village of Dolomieu, Isère to Joseph Cartan (1837–1917) and Anne Cottaz (1841–1927). Joseph Cartan was the village blacksmith; Élie Cartan recalled that his childhood had passed under "blows of the anvil, which started every morning from dawn", and that "his mother, during those rare minutes when she was free from taking care of the children and the house, was working with a spinning-wheel". Élie had an elder sister Jeanne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]