Heat Conduction
   HOME





Heat Conduction
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout. Thermal conductivity, frequently represented by , is a property that relates the rate of heat loss per unit area of a material to its rate of change of temperature. Essentially, it is a value that accounts for any property of the material that could change the way it conducts heat. Heat spontaneously flows along a temperature gradient (i.e. from a hotter body to a colder body). For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it. In the absence of an opposing external driving energy source, within a body or between bodies, temperature differences decay over time, and thermal equilibrium is approached, temperature becomin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermal Energy
The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential energy of the whole system. * Heat: Energy in transfer between a system and its surroundings by mechanisms other than Work (thermodynamics), thermodynamic work and transfer of matter. * The characteristic energy kT (energy), associated with a single microscopic degree of freedom, where denotes temperature and denotes the Boltzmann constant. Mark Zemansky (1970) has argued that the term "thermal energy" is best avoided due to its ambiguity. He suggests using more precise terms such as "internal energy" and "heat" to avoid confusion. The term is, however, used in some textbooks.For example: Relation between heat and internal energy In thermodynamics, heat is energy in transfer to or from a thermodynamic system by mechanisms other than t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Conductivity
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek alphabet, Greek letter  (Rho (letter), rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a solid cube of material has sheet contacts on two opposite faces, and the Electrical resistance, resistance between these contacts is , then the resistivity of the material is . Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter  (Sigma (letter), sigma), but  (kappa) (especially in electrical engineering) and  (gamma) are sometimes used. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lumped Capacitance Model
The lumped-element model (also called lumped-parameter model, or lumped-component model) is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities. The simplification reduces the state space of the system to a finite dimension, and the partial differential equations (PDEs) of the continuous (infinite-dimensional) time and space model of the physical system into ordinary differential equations (ODEs) with a finite number of parameters. Electrical systems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heat Equation
In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in many parts of both pure and applied mathematics. Definition Given an open subset of and a subinterval of , one says that a function is a solution of the heat equation if : \frac = \frac + \cdots + \frac, where denotes a general point of the domain. It is typical to refer to as time and as spatial variables, even in abstract contexts where these phrases fail to have their intuitive meaning. The collection of spatial variables is often referred to simply as . For any given value of , the right-hand side of the equation is the Laplace operator, Laplacian of the function . As such, the heat equation is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operating Temperature
An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the device function and application context, and ranges from the minimum operating temperature to the maximum operating temperature (or peak operating temperature). Outside this range of safe operating temperatures the device may fail. It is one component of reliability engineering. Similarly, biological systems have a viable temperature range, which might be referred to as an "operating temperature". Ranges Most semiconductor devices are manufactured in several temperature grades. Broadly accepted grades are: *Commercial: 0 °C to 70 °C () *Industrial: −40 °C to 85 °C () *Military: −55 °C to 125 °C () Nevertheless, each manufacturer defines its own temperature grades so designers must pay attention to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lumped Capacitance Model
The lumped-element model (also called lumped-parameter model, or lumped-component model) is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities. The simplification reduces the state space of the system to a finite dimension, and the partial differential equations (PDEs) of the continuous (infinite-dimensional) time and space model of the physical system into ordinary differential equations (ODEs) with a finite number of parameters. Electrical systems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Resistance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (), while electrical conductance is measured in siemens (S) (formerly called the 'mho' and then represented by ). The resistance of an object depends in large part on the material it is made of. Objects made of electrical insulators like rubber tend to have very high resistance and low conductance, while objects made of electrical conductors like metals tend to have very low resistance and high conductance. This relationship is quantified by resistivity or conductivity. The nature of a material is not the only factor in resistance and conductance, however; it also depends on the size and shape of an object because these properties are extensive rather tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermal Effusivity
In thermodynamics, a material's thermal effusivity, also known as thermal responsivity, is a measure of its ability to exchange energy with its surroundings. It is an intensive quantity defined as the square root of the product of the material's thermal conductivity (\lambda) and its volumetric heat capacity (\rho c_p) or as the ratio of thermal conductivity to the square root of thermal diffusivity (\alpha). :r = \frac=\sqrt. Some authors use the symbol e to denote the thermal responsivity, although its usage along with an exponential becomes difficult. The SI units for thermal effusivity are \sqrt / () or, equivalently, / ( \sqrt). Thermal effusivity can also be a measure of a solid or rigid material's '' thermal inertia''. Thermal effusivity is a parameter that emerges upon applying solutions of the heat equation to heat flow through a thin surface-like region. It becomes particularly useful when the region is selected adjacent to a material's actual surface. Knowing t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Phases Of Matter
Matter organizes into various phases or states of matter depending on its constituents and external factors like pressure and temperature. Except at extreme temperatures and pressures, atoms form the three classical states of matter: solid, liquid and gas. Complex molecules can also form various mesophases such as liquid crystals, which are intermediate between the liquid and solid phases. At high temperatures or strong electromagnetic fields, atoms become ionized, forming plasma. At low temperatures, the electrons of solid materials can also organize into various electronic phases of matter, such as the superconducting state, with vanishing resistivity. Magnetic states such as ferromagnetism and antiferromagnetism can also be regarded as phases of matter in which the electronic and nuclear spins organize into different patterns. Such states of matter are studied in condensed matter physics. In extreme conditions found in some stars and in the early universe, atoms break ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Property
A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called ''physical quantity''. Measurable physical quantities are often referred to as '' observables''. Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc. Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined. P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]