Cycle Double Cover Conjecture
In graph-theoretic mathematics, a cycle double cover is a collection of cycles in an undirected graph that together include each edge of the graph exactly twice. For instance, for any polyhedral graph, the faces of a convex polyhedron that represents the graph provide a double cover of the graph: each edge belongs to exactly two faces. It is an unsolved problem, posed by W. T. Tutte, Itai and Rodeh, George Szekeres and Paul Seymour and known as the cycle double cover conjecture, whether every bridgeless graph has a cycle double cover. The conjecture can equivalently be formulated in terms of graph embeddings, and in that context is also known as the circular embedding conjecture. Formulation The usual formulation of the cycle double cover conjecture asks whether every bridgeless undirected graph has a collection of cycles such that each edge of the graph is contained in exactly two of the cycles. The requirement that the graph be bridgeless is an obvious necessary condition fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Petersen Double Cover
Petersen is a common Danish patronymic surname, meaning ''"son of Peter"''. There are other spellings. Petersen may refer to: People In arts and entertainment * Adolf Dahm-Petersen, Norwegian voice specialist * Anja Petersen, German operatic soprano and university lecturer * Anker Eli Petersen, Faroese writer and artist * Ann Petersen, Belgian actress * Chris Petersen (born 1963), American child actor * Devon Petersen (born 1986), South African darts player * Elmer Petersen, American artist * Gustaf Munch-Petersen, Danish writer and painter * Joel Petersen, bass guitarist * John Hahn-Petersen, Danish actor * Josef Petersen, Danish novelist * Patrick Petersen, American actor * Paul Petersen, American movie actor, singer, novelist, and activist * Robert E. Petersen, publisher, auto museum founder * Robert Storm Petersen, Danish cartoonist, writer, animator, illustrator, painter and humorist * Sandy Petersen, American game designer * Uwe Fahrenkrog-Petersen, German mus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Toroidal Graph
In the mathematical field of graph theory, a toroidal graph is a graph that can be embedded on a torus. In other words, the graph's vertices and edges can be placed on a torus such that no edges intersect except at a vertex that belongs to both. Examples Any graph that can be embedded in a plane can also be embedded in a torus, so every planar graph is also a toroidal graph. A toroidal graph that cannot be embedded in a plane is said to have genus 1. The Heawood graph, the complete graph K7 (and hence K5 and K6), the Petersen graph (and hence the complete bipartite graph K3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, and all Möbius ladders are toroidal. More generally, any graph with crossing number 1 is toroidal. Some graphs with greater crossing numbers are also toroidal: the Möbius–Kantor graph, for example, has crossing number 4 and is toroidal. Properties Any toroidal graph has chromatic number at most 7. The complete g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-vertex-connected Graph
In graph theory, a connected Graph (discrete mathematics), graph is said to be -vertex-connected (or -connected) if it has more than Vertex (graph theory), vertices and remains Connectivity (graph theory), connected whenever fewer than vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest for which the graph is -vertex-connected. Definitions A graph (other than a complete graph) has connectivity ''k'' if ''k'' is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them. In complete graphs, there is no subset whose removal would disconnect the graph. Some sources modify the definition of connectivity to handle this case, by defining it as the size of the smallest subset of vertices whose deletion results in either a disconnected graph or a single vertex. For this variation, the connectivity of a complete graph K_n is n-1. An equivalent definition is that a graph with at least two vertic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cell Complex
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. (open access) CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces \emptyset = X_ \subset X_0 \subset X_1 \subset \cdots such that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to the open k- ball ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Girth (graph Theory)
In graph theory, the girth of an undirected graph is the length of a shortest Cycle (graph theory), cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest (graph theory), forest), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free graph, triangle-free. Cages A cubic graph (all vertices have degree three) of girth that is as small as possible is known as a -cage (graph theory), cage (or as a -cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. Im ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tietze's Graph
In the mathematical field of graph theory, Tietze's graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze, who showed in 1910 that the Möbius strip can be subdivided into six regions that all touch each other – three along the boundary of the strip and three along its center line – and therefore that graphs that are embedded onto the Möbius strip may require six colors. The boundary segments of the regions of Tietze's subdivision (including the segments along the boundary of the Möbius strip itself) form an embedding of Tietze's graph. Relation to Petersen graph Tietze's graph may be formed from the Petersen graph by replacing one of its vertices with a triangle. Like the Tietze graph, the Petersen graph forms the boundary of six mutually touching regions, but on the projective plane rather than on the Möbius strip. If one cuts a hole from this subdivision of the projective plane, surrounding a single vertex, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding or triangle detection problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with m edges is triangle-free in time \tilde O\bigl(m^\bigr) where the \tilde O hides sub-polynomial factors. Here \omega is t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are lazy." In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures to produce provable theorems. It is sometimes said that mathematical development consists primarily in finding (and proving) theorems and counterexamples. Rectangle example Suppose that a mathematician is studying geometry and shapes, and she wishes to prove certain theorems about them. She conjectures that "All re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chromatic Index
In graph theory, a proper edge coloring of a Graph (discrete mathematics), graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most different colors, for a given value of , or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three. By Vizing's theorem, the number of colors needed to edge color a simple graph is either its maximum Degree (graph theory), degree or . For some graphs, such as bip ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |