Cramér's Theorem (large Deviations)
   HOME





Cramér's Theorem (large Deviations)
Cramér's theorem is a fundamental result in the theory of large deviations, a subdiscipline of probability theory. It determines the rate function of a series of iid random variables. A weak version of this result was first shown by Harald Cramér in 1938. Statement The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as: : \Lambda(t)=\log \operatorname E exp(tX_1) Let X_1, X_2, \dots be a sequence of iid real random variables with finite logarithmic moment generating function, i.e. \Lambda(t) \operatorname E _1 In the terminology of the theory of large deviations the result can be reformulated as follows: If X_1, X_2, \dots is a series of iid random variables, then the distributions \left(\mathcal L ( \tfrac 1n \sum_^n X_i) \right)_ satisfy a large deviation principle with rate function In mathematics — specifically, in large deviations theory — a rate function is a function used to qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Deviations Theory
In probability theory, the theory of large deviations concerns the asymptotic behaviour of remote tails of sequences of probability distributions. While some basic ideas of the theory can be traced to Laplace, the formalization started with insurance mathematics, namely ruin theory with Cramér and Lundberg. A unified formalization of large deviation theory was developed in 1966, in a paper by Varadhan. Large deviations theory formalizes the heuristic ideas of ''concentration of measures'' and widely generalizes the notion of convergence of probability measures. Roughly speaking, large deviations theory concerns itself with the exponential decline of the probability measures of certain kinds of extreme or ''tail'' events. Introductory examples An elementary example Consider a sequence of independent tosses of a fair coin. The possible outcomes could be heads or tails. Let us denote the possible outcome of the i-th trial by where we encode head as 1 and tail as 0. Now let ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rate Function
In mathematics — specifically, in large deviations theory — a rate function is a function used to quantify the probabilities of rare events. Such functions are used to formulate large deviation principles. A large deviation principle quantifies the asymptotic probability of rare events for a sequence of probabilities. A rate function is also called a Cramér function, after the Swedish probabilist Harald Cramér. Definitions Rate function An extended real-valued function I: X \to , +\infty/math> defined on a Hausdorff topological space X is said to be a rate function if it is not identically +\infty and is lower semi-continuous ''i.e.'' all the sub-level sets :\ \mbox c \geq 0 are closed in X. If, furthermore, they are compact, then I is said to be a good rate function. A family of probability measures (\mu_)_ on X is said to satisfy the large deviation principle with rate function I: X \to , +\infty) (and rate 1/\delta) if, for every closed set F \subseteq X a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function (mathematics), function in which * the Domain of a function, domain is the set of possible Outcome (probability), outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the Range of a function, range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the Real number, real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harald Cramér
Harald Cramér (; 25 September 1893 – 5 October 1985) was a Swedish mathematician, actuary, and statistician, specializing in mathematical statistics and probabilistic number theory. John Kingman described him as "one of the giants of statistical theory".Kingman 1986, p. 186. Biography Early life Harald Cramér was born in Stockholm, Sweden on 25 September 1893. Cramér remained close to Stockholm for most of his life. He entered the Stockholm University as an undergraduate in 1912, where he studied mathematics and chemistry. During this period, he was a research assistant under the famous chemist, Hans von Euler-Chelpin, with whom he published his first five articles from 1913 to 1914. Following his lab experience, he began to focus solely on mathematics. He eventually began his work on his doctoral studies in mathematics which were supervised by Marcel Riesz at the Stockholm University. Also influenced by G. H. Hardy, Cramér's research led to a PhD in 1917 for his thesi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moment Generating Function
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions. As its name implies, the moment-generating function can be used to compute a distribution’s moments: the -th moment about 0 is the -th derivative of the moment-generating function, evaluated at 0. In addition to univariate real-valued distributions, moment-generating functions can also be defined for vector- or matrix-valued random variables, and can even be extended to more general cases. The moment-generating function of a real-valu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cumulant
In probability theory and statistics, the cumulants of a probability distribution are a set of quantities that provide an alternative to the '' moments'' of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa. The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is the same as the third central moment. But fourth and higher-order cumulants are not equal to central moments. In some cases theoretical treatments of problems in terms of cumulants are simpler than those using moments. In particular, when two or more random variables are statistically independent, the th-order cumulant of their sum is equal to the sum of their th-order cumulants. As well, the third and higher-order cumulants of a normal distribution are zero, and it is the only distribution with this property. Just as for moments, where ''joint moments'' are used for collections of random variables ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Variables
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which * the domain is the set of possible outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a die; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendre Transformation
In mathematics, the Legendre transformation (or Legendre transform), first introduced by Adrien-Marie Legendre in 1787 when studying the minimal surface problem, is an involutive transformation on real-valued functions that are convex on a real variable. Specifically, if a real-valued multivariable function is convex on one of its independent real variables, then the Legendre transform with respect to this variable is applicable to the function. In physical problems, the Legendre transform is used to convert functions of one quantity (such as position, pressure, or temperature) into functions of the conjugate quantity (momentum, volume, and entropy, respectively). In this way, it is commonly used in classical mechanics to derive the Hamiltonian formalism out of the Lagrangian formalism (or vice versa) and in thermodynamics to derive the thermodynamic potentials, as well as in the solution of differential equations of several variables. For sufficiently smooth functions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Large Deviation Principle
In mathematics — specifically, in large deviations theory — a rate function is a function used to quantify the probabilities of rare events. Such functions are used to formulate large deviation principles. A large deviation principle quantifies the asymptotic probability of rare events for a sequence of probabilities. A rate function is also called a Cramér function, after the Swedish probabilist Harald Cramér. Definitions Rate function An extended real-valued function I: X \to , +\infty/math> defined on a Hausdorff topological space X is said to be a rate function if it is not identically +\infty and is lower semi-continuous ''i.e.'' all the sub-level sets :\ \mbox c \geq 0 are closed in X. If, furthermore, they are compact, then I is said to be a good rate function. A family of probability measures (\mu_)_ on X is said to satisfy the large deviation principle with rate function I: X \to , +\infty) (and rate 1/\delta) if, for every closed set F \subseteq X a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]