HOME





Commutator Subspace
In mathematics, the commutator subspace of a two-sided ideal of bounded linear operators on a separable Hilbert space is the linear subspace spanned by commutators of operators in the ideal with bounded operators. Modern characterisation of the commutator subspace is through the Calkin correspondence and it involves the invariance of the Calkin sequence space of an operator ideal to taking Cesàro means. This explicit spectral characterisation reduces problems and questions about commutators and traces on two-sided ideals to (more resolvable) problems and conditions on sequence spaces. History Commutators of linear operators on Hilbert spaces came to prominence in the 1930s as they featured in the matrix mechanics, or Heisenberg, formulation of quantum mechanics. Commutator subspaces, though, received sparse attention until the 1970s. American mathematician Paul Halmos in 1954 showed that every bounded operator on a separable infinite dimensional Hilbert space is the sum of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Ideal (ring Theory)
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Trace Class Operator
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators. In quantum mechanics, quantum states are described by density matrices, which are certain trace class operators. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and use the term "nuclear operator" in more general topological vector spaces (such as Banach spaces). Definition Let H be a separable Hilbert space, \left\_^ an orthonormal basis and A : H \to H a positive bounded linear operator on H. The trace of A is denoted by \operatorname (A) and defined as :\operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Finite-rank Operator
In functional analysis, a branch of mathematics, a finite-rank operator is a bounded linear operator between Banach spaces whose range is finite-dimensional. Finite-rank operators on a Hilbert space A canonical form Finite-rank operators are matrices (of finite size) transplanted to the infinite dimensional setting. As such, these operators may be described via linear algebra techniques. From linear algebra, we know that a rectangular matrix, with complex entries, M \in \mathbb^ has rank 1 if and only if M is of the form :M = \alpha \cdot u v^*, \quad \mbox \quad \, u \, = \, v\, = 1 \quad \mbox \quad \alpha \geq 0 . The same argument and Riesz' lemma show that an operator T on a Hilbert space H is of rank 1 if and only if :T h = \alpha \langle h, v\rangle u \quad \mbox \quad h \in H , where the conditions on \alpha, u, v are the same as in the finite dimensional case. Therefore, by induction, an operator T of finite rank n takes the form :T h = \sum _ ^n \alpha_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Compact Operator On Hilbert Space
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach. For example, the spectral theory of compact operators on Banach spaces takes a form that is very similar to the Jordan canonical form of matrices. In the context of Hilbert spaces, a square matrix is unitarily diagonalizable if and only if it is normal. A corresponding result holds for normal compact operators on Hilbert spaces. More generally, the compactness assumption can be dropped. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Symmetric Functional
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature; and in the arts, covering architecture, art, and music. The opposite of symmetry is asymmetry, wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Nilpotent Operator
In operator theory, a bounded operator ''T'' on a Banach space is said to be nilpotent if ''Tn'' = 0 for some positive integer ''n''. It is said to be quasinilpotent or topologically nilpotent if its spectrum ''σ''(''T'') = . Examples In the finite-dimensional case, i.e. when ''T'' is a square matrix (Nilpotent matrix) with complex entries, ''σ''(''T'') = if and only if ''T'' is similar to a matrix whose only nonzero entries are on the superdiagonal (this fact is used to prove the existence of Jordan canonical form). In turn this is equivalent to ''Tn'' = 0 for some ''n''. Therefore, for matrices, quasinilpotency coincides with nilpotency. This is not true when ''H'' is infinite-dimensional. Consider the Volterra operator, defined as follows: consider the unit square ''X'' = ,1× ,1⊂ R2, with the Lebesgue measure ''m''. On ''X'', define the kernel function ''K'' by :K(x,y) = \left\{ \begin{matrix} 1, & \mbox{if} \; x \geq y\\ 0, & \mbox{otherwise}. \en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Normal Operator
In mathematics, especially functional analysis, a normal operator on a complex number, complex Hilbert space H is a continuous function (topology), continuous linear operator N\colon H\rightarrow H that commutator, commutes with its Hermitian adjoint N^, that is: N^N = NN^. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are * unitary operators: U^ = U^ * Hermitian operators (i.e., self-adjoint operators): N^ = N * skew-Hermitian operators: N^ = -N * positive operators: N = M^M for some M (so ''N'' is self-adjoint). A normal matrix is the matrix expression of a normal operator on the Hilbert space \mathbb^. Properties Normal operators are characterized by the spectral theorem. A Compact operator on Hilbert space, compact normal operator (in particular, a normal operator on a dimension (vector space), finite-dimensional inner product space) is unitarily diagonalizable. Let ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Singular Values
In mathematics, in particular functional analysis, the singular values of a compact operator T: X \rightarrow Y acting between Hilbert spaces X and Y, are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator T^*T (where T^* denotes the adjoint operator, adjoint of T). The singular values are non-negative real numbers, usually listed in decreasing order (''σ''1(''T''), ''σ''2(''T''), …). The largest singular value ''σ''1(''T'') is equal to the operator norm of ''T'' (see Min-max theorem#Min-max principle for singular values, Min-max theorem). If ''T'' acts on Euclidean space \Reals ^n, there is a simple geometric interpretation for the singular values: Consider the image by T of the N-sphere, unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of T (the figure provides an example in \Reals^2). The singular values are the absolute values of the eigenvalues of a normal matrix ''A'', because the sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]