Coleman–Weinberg Potential
The Coleman–Weinberg model represents quantum electrodynamics of a scalar field in four-dimensions. The Lagrangian for the model is :L = -\frac (F_)^2 + , D_ \phi, ^2 - m^2 , \phi, ^2 - \frac , \phi, ^4 where the scalar field is complex, F_=\partial_\mu A_\nu-\partial_\nu A_\mu is the electromagnetic field tensor, and D_=\partial_\mu-\mathrm i (e/\hbar c)A_\mu the covariant derivative containing the electric charge e of the electromagnetic field. Assume that \lambda is nonnegative. Then if the mass term is tachyonic, m^20 the vacuum expectation of the field \phi is zero. At the classical level the latter is true also if m^2=0. However, as was shown by Sidney Coleman and Erick Weinberg, even if the renormalized mass is zero, spontaneous symmetry breaking still happens due to the radiative corrections (this introduces a mass scale into a classically conformal theory - model have a conformal anomaly). The same can happen in other gauge theories. In the broken phase the fluctua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction. In technical terms, QED can be described as a perturbation theory of the electromagnetic quantum vacuum. Richard Feynman called it "the jewel of physics" for its extremely accurate predictions of quantities like the anomalous magnetic moment of the electron and the Lamb shift of the energy levels of hydrogen. History The first formulation of a quantum theory describing radiation and matter interaction is attributed to British scientist Paul Dirac, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type I Superconductor
The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a first order phase transition when the strength of the applied field rises above a critical value ''H''c. This type of superconductivity is normally exhibited by pure metals, e.g. aluminium, lead, and mercury. The only alloy known up to now which exhibits type I superconductivity is TaSi2. The covalent superconductor SiC:B, silicon carbide heavily doped with boron, is also type-I. Depending on the demagnetization factor, one may obtain an intermediate state. This state, first described by Lev Landau, is a phase separation into macroscopic non-superconducting and superconducting domains forming a Husimi Q representatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quartic Interaction
In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field \varphi satisfies the Klein–Gordon equation. If a scalar field is denoted \varphi, a quartic interaction is represented by adding a potential energy term (/) \varphi^4 to the Lagrangian density. The coupling constant \lambda is dimensionless in 4-dimensional spacetime. This article uses the (+, -, -, -) metric signature for Minkowski space. The Lagrangian for a real scalar field The Lagrangian density for a real scalar field with a quartic interaction is :\mathcal(\varphi)=\frac partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2-\frac \varphi^4. This Lagrangian has a global Z2 symmetry mapping \varphi\to-\varphi. The Lagrangian for a complex scalar field The Lagrangian for a complex scalar field can be motivated as follows. For ''two'' scalar fields ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lev Landau
Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His accomplishments include the independent co-discovery of the density matrix method in quantum mechanics (alongside John von Neumann), the quantum mechanical theory of diamagnetism, the theory of superfluidity, the theory of second-order phase transitions, the Ginzburg–Landau theory of superconductivity, the theory of Fermi liquids, the explanation of Landau damping in plasma physics, the Landau pole in quantum electrodynamics, the two-component theory of neutrinos, and Landau's equations for ''S'' matrix singularities. He received the 1962 Nobel Prize in Physics for his development of a mathematical theory of superfluidity that accounts for the properties of liquid helium II at a temperature below (). Life Early years Landau was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vitaly Ginzburg
Vitaly Lazarevich Ginzburg, ForMemRS (russian: Вита́лий Ла́заревич Ги́нзбург, link=no; 4 October 1916 – 8 November 2009) was a Russian physicist who was honored with the Nobel Prize in Physics in 2003, together with Alexei Abrikosov and Anthony Leggett for their "pioneering contributions to the theory of superconductors and superfluids." His career in physics was spent in the former Soviet Union and was one of the leading figure in former Soviet program of nuclear weapons, working towards designs of the thermonuclear devices. He became a member of the Russian Academy of Sciences and succeeded Igor Tamm as head of the Department of Theoretical Physics of the Lebedev Physical Institute of the Russian Academy of Sciences (FIAN). In his later life, Ginzburg become an outspoken atheist and was critical of clergy's influence in Russian society. Biography Vitaly Ginzburg was born to a Jewish family in Moscow on 4 October 1916— the son of an engineer, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zhurnal Eksperimental'noi I Teoreticheskoi Fiziki
The ''Journal of Experimental and Theoretical Physics'' (''JETP'') [russian: Журнал Экспериментальной и Теоретической Физики, italic=yes (''ЖЭТФ''), or ''Zhurnal Éksperimental'noĭ i Teoreticheskoĭ Fiziki'' (''ZhÉTF'')] is a peer-reviewed Russian bilingual scientific journal covering all areas of experimental and theoretical physics. For example, coverage includes solid state physics, elementary particles, and cosmology. The journal is published simultaneously in both Russian and English languages. The editor-in-chief is Alexander F. Andreev Alexander Fyodorovich Andreev (russian: Александр Фёдорович Андреев, born 1939) is a Russian theoretical physicist best known for explaining the eponymous Andreev reflection. Andreev was educated at the Moscow Institute .... In addition, this journal is a continuation of ''Soviet physics, JETP'' (1931–1992), which began English translation in 1955. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical Review D
Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally consists of a series of questions about the patie ..., a regular overall check-up with a doctor * ''Physical'' (Olivia Newton-John album), 1981 ** "Physical" (Olivia Newton-John song) * ''Physical'' (Gabe Gurnsey album) * "Physical" (Alcazar song) (2004) * "Physical" (Enrique Iglesias song) (2014) * "Physical" (Dua Lipa song) (2020) *"Physical (You're So)", a 1980 song by Adam & the Ants, the B side to " Dog Eat Dog" * ''Physical'' (TV series), an American television series See also {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Simulation
Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics ( computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions. Computer simulations are realized by running computer programs that can be either small, running almost instantly on small devices, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type II Superconductor
In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the formation of magnetic field vortices with an applied external magnetic field. This occurs above a certain critical field strength ''Hc1''. The vortex density increases with increasing field strength. At a higher critical field ''Hc2'', superconductivity is destroyed. Type-II superconductors do not exhibit a complete Meissner effect. History In 1935, Rjabinin and Shubnikov experimentally discovered the Type-II superconductors. In 1950, the theory of the two types of superconductors was further developed by Lev Landau and Vitaly Ginzburg in their paper on Ginzburg–Landau theory. In their argument, a type-I superconductor had positive free energy of the superconductor-normal metal boundary. Ginzburg and Landau pointed out the possibili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type I Superconductor
The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into two types according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed via a first order phase transition when the strength of the applied field rises above a critical value ''H''c. This type of superconductivity is normally exhibited by pure metals, e.g. aluminium, lead, and mercury. The only alloy known up to now which exhibits type I superconductivity is TaSi2. The covalent superconductor SiC:B, silicon carbide heavily doped with boron, is also type-I. Depending on the demagnetization factor, one may obtain an intermediate state. This state, first described by Lev Landau, is a phase separation into macroscopic non-superconducting and superconducting domains forming a Husimi Q representatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |