HOME



picture info

Clebsch–Gordan Coefficients For SU(3)
In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory. Generalization to SU(3) of Clebsch–Gordan coefficients is useful because of their utility in characterizing hadronic decays, where a flavor-SU(3) symmetry exists (the '' eightfold way'') that connects the three light quarks: up, down, and strange. SU(3) group The special unitary group SU is the group of unitary matrices whose determinant is equal to 1. This set is closed under matrix multiplication. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics. Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical parts of our world. Classical mechanics Applying the techniques of mathematical physics to classical mechanics typically involves the rigorous, abstract, and advanced reformulation of Newtonian mechanics in terms of Lagrangian mechanics and Hamiltonian mechanics (including both approaches in the presence of constraints). Both formulations are embodied in analytical mechanics and lead ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unitary Matrix
In linear algebra, an invertible complex square matrix is unitary if its matrix inverse equals its conjugate transpose , that is, if U^* U = UU^* = I, where is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (), so the equation above is written U^\dagger U = UU^\dagger = I. A complex matrix is special unitary if it is unitary and its matrix determinant equals . For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes. Properties For any unitary matrix of finite size, the following hold: * Given two complex vectors and , multiplication by preserves their inner product; that is, . * is normal (U^* U = UU^*). * is diagonalizable; that is, is unitarily similar to a diagonal matrix, as a consequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra \mathfrak over a field of characteristic 0 . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements ''x'' such that the adjoint endomorphism \operatorname(x) : \mathfrak \to \mathfrak is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypercharge
In particle physics, the hypercharge (a portmanteau of hyperonic and charge (physics), charge) ''Y'' of a subatomic particle, particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charge (physics), charge operator that accounts for properties of isospin, electric charge, and flavour (particle physics), flavour. The hypercharge is useful to classify hadrons; the similarly named weak hypercharge has an analogous role in the electroweak interaction. Definition Hypercharge is one of two quantum numbers of the Eightfold way (physics)#SU(3), SU(3) model of hadrons, alongside isospin . The isospin alone was sufficient for two quark flavours — namely and — whereas presently 6 flavour (particle physics), flavours of quarks are known. SU(3) weight diagrams (see below) are 2 dimensional, with the coordinates referring to two quantum numbers: (also known as ), which is the  component of isospin, and , whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons. The name of the concept contains the term ''spin'' because its quantum mechanical description is mathematically similar to that of angular momentum (in particular, in the way it couples; for example, a proton–neutron pair can be coupled either in a state of total isospin 1 or in one of 0). But unlike angular momentum, it is a dimensionless quantity and is not actually any type of spin. Before the concept of quarks was introduced, particles that are affected equally by the strong force but had different charges (e.g. protons and neutrons) were considered different states of the same particle, but having isospin values related to the number of charge states. A close exami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Commutation Relation
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (that is, if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many group theorists define the commutator as : . Using the first definition, this can be expressed as . Identities (group theory) Commutator identities are an important tool in group theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David J
David John Haskins (born 24 April 1957, Northampton, Northamptonshire, England), better known as David J, is a British alternative rock musician, producer, and writer. He is the bassist for the gothic rock band Bauhaus (band), Bauhaus and for Love and Rockets (band), Love and Rockets. He has composed the scores for a number of plays and films, and also wrote and directed his own plays, ''Silver for Gold (The Odyssey of Edie Sedgwick)'', in 2008, which was restaged at REDCAT in Los Angeles in 2011, and ''The Chanteuse and The Devil's Muse'' in 2011. His artwork has been shown in galleries internationally, and he has been a resident DJ at venues such as the Knitting Factory. David J has released a number of singles and solo albums, and in 1990 he released one of the first No. 1 hits on the then nascent Modern Rock Tracks charts, with "I'll Be Your Chauffeur". His most recent single, "The Day That David Bowie Died" entered the UK vinyl singles chart at number 4 in 2016. The trac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Change Of Basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector on one basis is, in general, different from the coordinate vector that represents on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis. Such a conversion results from the ''change-of-basis formula'' which expresses the coordinates relative to one basis in terms of coordinates relative to the other basis. Using matrices, this formula can be written :\mathbf x_\mathrm = A \,\mathbf x_\mathrm, where "old" and "new" refer respectively to the initially defined basis and the other basis, \mathbf x_\mathrm and \mathbf x_\mathrm are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root System A2 With Labels
In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water. Function The major functions of roots are absorption of water, plant nutrition and anchoring of the plant body to the ground. Types of Roots (major rooting system) Plants exhibit two main root system types: ''taproot'' and ''fibrous'', with variations like adventitious, aerial, and buttress roots, each serving specific functions. Taproot System Characterized by a single, main root growing vertically downward, with smaller lateral roots branching off. Examples. Dandelions, carrots, and many dicot plants. Fibrous RootSystem Consists of a network of thin, branching roots that spread out from the base of the stem, l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gell-Mann Matrices
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundamental building blocks of the strongly interacting particles, and the renormalization group as a foundational element of quantum field theory and statistical mechanics. He played key roles in developing the concept of chirality in the theory of the weak interactions and spontaneous chiral symmetry breaking in the strong interactions, which controls the physics of the light mesons. In the 1970s he was a co-inventor of quantum chromodynamics (QCD) which explains the confinement of quarks in mesons and baryons and forms a large part of the Standard Model of elementary particles and forces. Murray Gell-Mann received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. Life and education Gell-Mann was born in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : A \text \quad \iff \quad a_ = \overline or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as A \text \quad \iff \quad A = A^\mathsf Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although in quantum mechanics, A^\ast typically means the complex conjugate onl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]