Central Tendency
In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.Weisberg H.F (1992) ''Central Tendency and Variability'', Sage University Paper Series on Quantitative Applications in the Social Sciences, p.2 Colloquially, measures of central tendency are often called '' averages.'' The term ''central tendency'' dates from the late 1920s. The most common measures of central tendency are the arithmetic mean, the median, and the mode. A middle tendency can be calculated for either a finite set of values or for a theoretical distribution, such as the normal distribution. Occasionally authors use central tendency to denote "the tendency of quantitative data to cluster around some central value."Upton, G.; Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP (entry for "central tendency")Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP for International Statistical Institute. (entry for "cent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Mean
In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rate (mathematics), rates such as speeds, and is normally only used for positive arguments. The harmonic mean is the multiplicative inverse, reciprocal of the arithmetic mean of the reciprocals of the numbers, that is, the generalized f-mean with f(x) = \frac. For example, the harmonic mean of 1, 4, and 4 is :\left(\frac\right)^ = \frac = \frac = 2\,. Definition The harmonic mean ''H'' of the positive real numbers x_1, x_2, \ldots, x_n is :H(x_1, x_2, \ldots, x_n) = \frac = \frac. It is the reciprocal of the arithmetic mean of the reciprocals, and vice versa: :\begin H(x_1, x_2, \ldots, x_n) &= \frac, \\ A(x_1, x_2, \ldots, x_n) &= \frac, \end where the arithmetic mean is A(x_1, x_2, \ldots, x_n) = \tfrac1n \sum_^n x_i. The harmonic mean is a Schur-concave function, and is greater than or equal to the minimum of its arguments: for positive a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Injective Function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, implies ). In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. A func ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Mean
In mathematics, generalised means (or power mean or Hölder mean from Otto Hölder) are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means (arithmetic mean, arithmetic, geometric mean, geometric, and harmonic mean, harmonic means). Definition If is a non-zero real number, and x_1, \dots, x_n are positive real numbers, then the generalized mean or power mean with exponent of these positive real numbers is M_p(x_1,\dots,x_n) = \left( \frac \sum_^n x_i^p \right)^ . (See Norm (mathematics)#p-norm, -norm). For we set it equal to the geometric mean (which is the limit of means with exponents approaching zero, as proved below): M_0(x_1, \dots, x_n) = \left(\prod_^n x_i\right)^ . Furthermore, for a sequence of positive weights we define the weighted power mean as M_p(x_1,\dots,x_n) = \left(\frac \right)^ and when , it is equal to the weighted geometric mean: M_0(x_1,\dots,x_n) = \left(\prod_^n x_i^\right)^ . The unweight ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-arithmetic Mean
In mathematics and statistics, the quasi-arithmetic mean or generalised ''f''-mean or Kolmogorov-Nagumo-de Finetti mean is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function f. It is also called Kolmogorov mean after Soviet mathematician Andrey Kolmogorov. It is a broader generalization than the regular generalized mean. Definition If ''f'' is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective, the ''f''-mean of n numbers x_1, \dots, x_n \in I is defined as M_f(x_1, \dots, x_n) = f^\left( \fracn \right), which can also be written : M_f(\vec x)= f^\left(\frac \sum_^f(x_k) \right) We require ''f'' to be injective in order for the inverse function f^ to exist. Since f is defined over an interval, \fracn lies within the domain of f^. Since ''f'' is injective and continuous, it follows that ''f'' is a strictly monotonic function, and therefore that the ''f''-me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quartile
In statistics, quartiles are a type of quantiles which divide the number of data points into four parts, or ''quarters'', of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three quartiles, resulting in four data divisions, are as follows: * The first quartile (''Q''1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the ''lower'' quartile. * The second quartile (''Q''2) is the median of a data set; thus 50% of the data lies below this point. * The third quartile (''Q''3) is the 75th percentile where lowest 75% data is below this point. It is known as the ''upper'' quartile, as 75% of the data lies below this point. Along with the minimum and maximum of the data (which are also quartiles), the three quartiles described above provide a five-number summary of the data. This summary is important in statistics because it provides infor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Midhinge
In statistics, the midhinge () is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is defined as \begin \operatorname(X) &= \overline \\ &= \frac \\ &= \frac \\ &= M_(X). \end The midhinge is related to the interquartile range (), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the , one can find the first and third quartiles. The use of the term ''hinge'' for the lower or upper quartiles derives from John Tukey's work on exploratory data analysis in the late 1970s,Tukey, J. W. (1977) ''Exploratory Data Analysis'', Addison-Wesley. and ''midhinge'' is a fairly modern term dating from around that time. The midhinge is slightly simpler to calculate than the trimean (), which originated in the same context and equals the avera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Midrange
In statistics, the mid-range or mid-extreme is a measure of central tendency of a sample defined as the arithmetic mean of the maximum and minimum values of the data set: :M=\frac. The mid-range is closely related to the range, a measure of statistical dispersion defined as the difference between maximum and minimum values. The two measures are complementary in sense that if one knows the mid-range and the range, one can find the sample maximum and minimum values. The mid-range is rarely used in practical statistical analysis, as it lacks efficiency as an estimator for most distributions of interest, because it ignores all intermediate points, and lacks robustness, as outliers change it significantly. Indeed, for many distributions it is one of the least efficient and least robust statistics. However, it finds some use in special cases: it is the maximally efficient estimator for the center of a uniform distribution, trimmed mid-ranges address robustness, and as an L-estimator ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interquartile Range
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by ''Q''1 (also called the lower quartile), ''Q''2 (the median), and ''Q''3 (also called the upper quartile). The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = ''Q''3 − ''Q''1. The IQR is an example of a trimmed estimator, defined as the 25% trimmed range, which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. It is also used as a robust measure of scale It can be clearly visualized by the box on a box plot. Use ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interquartile Mean
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: ''discard the lowest and the highest scores; calculate the mean value of the remaining scores''. Calculation In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. : x_\mathrm = \sum_^ assuming the values have been ordered. Examples Dataset size divisible by four The method is best explained with an example. Consider the following dataset: :5, 8, 4, 38, 8, 6, 9, 7, 7, 3, 1, 6 First sort the list from lowest-to-highest: :1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38 There are 12 observations (datapoints) in the dataset, thus we have 4 quartiles of 3 numbers. Discard the lowest and the highest 3 values: :1, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 38 We now ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |