Bayesian Networks
   HOME





Bayesian Networks
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their Conditional dependence, conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and machine learning, learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech recognition, speech signals or peptide sequence, protein sequences) ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probabilistic Graphical Model
A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a Graph (discrete mathematics), graph expresses the conditional dependence structure between random variables. Graphical models are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning. Types of graphical models Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or Factor graph, factorized representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, Bayesian networks and Markov random fields. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space–time Tradeoff
space–time trade-off, also known as time–memory trade-off or the algorithmic space-time continuum in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, ''space'' refers to the data storage consumed in performing a given task ( RAM, HDD, etc.), and ''time'' refers to the time consumed in performing a given task (computation time or response time). The utility of a given space–time tradeoff is affected by related fixed and variable costs (of, e.g., CPU speed, storage space), and is subject to diminishing returns. History Biological usage of time–memory tradeoffs can be seen in the earlier stages of animal behavior. Using stored knowledge or encoding stimuli reactions as "instincts" in the DNA avoids the need for "calculation" in time-critical situations. More specific to computers, look-up tables have been implemented since the very earliest operating systems. In 1980 Martin Hellman first proposed usi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Junction Tree Algorithm
The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs. In essence, it entails performing belief propagation on a modified graph called a junction tree. The graph is called a tree because it branches into different sections of data; nodes of variables are the branches. The basic premise is to eliminate cycles by clustering them into single nodes. Multiple extensive classes of queries can be compiled at the same time into larger structures of data. There are different algorithms to meet specific needs and for what needs to be calculated. Inference algorithms gather new developments in the data and calculate it based on the new information provided. Junction tree algorithm Hugin algorithm * If the graph is directed then moralize it to make it un-directed. *Introduce the evidence. * Triangulate the graph to make it chordal. *Construct a junction tree from the triangulated graph (we will cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variable Elimination
Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields.Zhang, N.L., Poole, D.:A Simple Approach to Bayesian Network Computations.In: 7th Canadian Conference on Artificial Intelligence, pp. 171--178. Springer, New York (1994) It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables. The algorithm has exponential time complexity, but could be efficient in practice for low- treewidth graphs, if the proper elimination order is used. Factors Enabling a key reduction in algorithmic complexity, a factor f, also known as a potential, of variables V is a relation between each instantiation of v of variables f to a non-negative number, commonly denoted as f(x). A factor does not necessarily have a set interpretation. One may perform operations on factors of different representations such as a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bayes' Theorem
Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting Conditional probability, conditional probabilities, allowing one to find the probability of a cause given its effect. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to someone of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the person is typical of the population as a whole. Based on Bayes' law, both the prevalence of a disease in a given population and the error rate of an infectious disease test must be taken into account to evaluate the meaning of a positive test result and avoid the ''base-rate fallacy''. One of Bayes' theorem's many applications is Bayesian inference, an approach to statistical inference, where it is used to invert the probability of Realization (probability), observations given a model configuration (i.e., th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sufficient Statistic
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an ancillary statistic which contains no information about the model parameters, and of a complete statistic which only contains information about the parameters and no ancillary information. A related concept is that of linear sufficiency, which is weaker than ''sufficiency'' but can be applied in some cases where there is no sufficient statistic, although it is restricted to linear estimators. The Kolmogorov structure function deals with individual finite data; the related notion there is the algorithmic sufficient statistic. The concept is due to Sir Ronald Fisher in 1920. Stephen Stigler noted in 1973 that the concept of sufficiency had fallen out of favor in descriptive statistics because of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morgan Kaufmann
Morgan Kaufmann Publishers is a Burlington, Massachusetts (San Francisco, California until 2008) based publisher specializing in computer science and engineering content. Since 1984, Morgan Kaufmann has been publishing contents on information technology, computer architecture, data management, computer networking, computer systems, human computer interaction, computer graphics, multimedia information and systems, artificial intelligence, computer security, and software engineering. Morgan Kaufmann's audience includes the research and development communities, information technology (IS/IT) managers, and students in professional degree programs. The company was founded in 1984 by publishers Michael B. Morgan and William Kaufmann and computer scientist Nils Nilsson. It was held privately until 1998, when it was acquired by Harcourt General and became an imprint of the Academic Press, a subsidiary of Harcourt. Harcourt was acquired by Reed Elsevier in 2001; Morgan Kaufmann is now ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simpson's Paradox
Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science statistics, and is particularly problematic when frequency data are unduly given causal interpretations. Judea Pearl. ''Causality: Models, Reasoning, and Inference'', Cambridge University Press (2000, 2nd edition 2009). . The paradox can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling (e.g., through cluster analysis). Simpson's paradox has been used to illustrate the kind of misleading results that the misuse of statistics can generate. Edward H. Simpson first described this phenomenon in a technical paper in 1951; the statisticians Karl Pearson (in 1899) and Udny Yule (in 1903) had mentioned similar effects earlier. The name ''Simpson's paradox'' was introduced by Col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


D-separation
A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). While it is one of several forms of causal notation, causal networks are special cases of Bayesian networks. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks. Bayesian networks that model sequences of variables (''e.g.'' speech signals or protein sequences) are called dynamic Bayesian networks. Generalizations of Bayesian networks tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditional Probability Table
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables). For example, assume there are three random variables x_1,x_2, x_3 where each has K states. Then, the conditional probability table of x_1 provides the conditional probability values P(x_1=a_k\mid x_2,x_3) – where the vertical bar , means “given the values of” – for each of the ''K'' possible values a_k of the variable x_1 and for each possible combination of values of x_2,\, x_3. This table has K^3 cells. In general, for M variables x_1,x_2,\ldots,x_M with K_i states for each variable x_i, the CPT for any one of them has the number of cells equal to the product K_1K_2\cdots K_M. A conditional probability table can be put into matrix form. As an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nuisance Variable
In the theory of stochastic processes In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stoc ... in probability theory and statistics, a nuisance variable is a random variable that is fundamental to the probabilistic model, but that is of no particular interest in itself or is no longer of any interest: one such usage arises for the Chapman–Kolmogorov equation. For example, a model for a stochastic process may be defined conceptually using intermediate variables that are not observed in practice. If the problem is to derive the theoretical properties, such as the mean, variance and covariances of quantities that would be observed, then the intermediate variables are nuisance variables. The related term nuisance factor has been used in the context of Randomized block design, block experiment ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]