Astronomical Imaging
   HOME



picture info

Astronomical Imaging
Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1839, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength. Photography using extended exposure-times revolutionized the field of professional astronomical research, recording hundreds of thousands of new stars, and nebulae invisible to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orion Belt
Orion's Belt is an asterism in the constellation of Orion. Other names include the Belt of Orion, the Three Kings, and the Three Sisters. The belt consists of three bright and easily identifiable collinear star systems – Alnitak, Alnilam, and Mintaka – nearly equally spaced in a line, spanning an angular size of ~ (2.3°). Owing to the high surface temperatures of their constituent stars, the intense light emitted is blue-white in color. In spite of their spot-like appearance, only Alnilam is a single star; Alnitak is a triple star system, and Mintaka a sextuple. All three owe their luminosity to the presence of one or more blue supergiants. The brightest as viewed from Sol is Alnilam, with an apparent magnitude of 1.69, followed by Alnitak at 1.74 and Mintaka at 2.25. The ten stars of the three systems have a combined luminosity approximately 970,000 times that of the Sun. Orion's Belt appears widely in historical literature and in various cultures, under many diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P48 1994 Jean Large
P48 or P.48 may refer to: Aircraft * Douglas XP-48, a cancelled American fighter aircraft * Partenavia P.48 Astore, an Italian prototype light aircraft * Percival P.48 Merganser, a British civil utility aircraft Other uses

* BMW P48 Turbo engine, an automobile engine * BRM P48, a Formula One racing car * , a P-class sloop of the Royal Navy * , a submarine of the Royal Navy * Papyrus 48 or P48, an early copy of a part of the New Testament in Greek * Pleasant Valley Airport, in Maricopa County, Arizona, United States * PTF1A, pancreas transcription factor 1 subunit alpha * P48, a List of national roads in Latvia#P48, Latvian state regional road * P48, a phantom power standard {{Letter-number combination disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other Astronomical object, celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way. History The history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to the ancient Greek astronomer Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis and Aristillus to discover Earth's precession. In doing so, he also developed the brightness scale still in use today. Hipparchus compiled a catalogue with at least 850 stars and their positions. Hipparchus's successor, Ptolemy, included a catalogue of 1,022 stars in his work the ''Almagest'', giving their location, coordinates, and brightness. In the 10th century, the Iranian astronomer Abd al-Rahman al-Sufi carried ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star Cartography
Celestial cartography, uranography, astrography or star cartography is the aspect of astronomy and branch of cartography concerned with mapping stars, galaxies, and other astronomical objects on the celestial sphere. Measuring the position and light of charted objects requires a variety of instruments and techniques. These techniques have developed from angle measurements with quadrants and the unaided eye, through sextants combined with lenses for light magnification, up to current methods which include computer-automated space telescopes. Uranographers have historically produced planetary position tables, star tables, and star maps for use by both amateur and professional astronomers. More recently, computerized star maps have been compiled, and automated positioning of telescopes uses databases of stars and of other astronomical objects. Etymology The word "uranography" derived from the Greek "ουρανογραφια" (Koine Greek ''ουρανος'' "sky, heaven" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Hair
A reticle or reticule, also known as a graticule or crosshair, is a pattern of fine lines or markings built into the eyepiece of an optical device such as a telescopic sight, spotting scope, theodolite, optical microscope or the screen of an oscilloscope, to provide measurement references during visual inspections. Today, engraved lines or embedded fibers may be replaced by a digital image superimposed on a screen or eyepiece. Both terms may be used to describe any set of patterns used for aiding visual measurements and calibrations, but in modern use ''reticle'' is most commonly used for weapon sights, while ''graticule'' is more widely used for non-weapon measuring instruments such as oscilloscope display, astronomic telescopes, microscopes and slides, surveying instruments and other similar devices. There are many variations of reticle pattern; this article concerns itself mainly with the most rudimentary reticle: the crosshair. Crosshairs are typically represented as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beam Splitter
A beam splitter or beamsplitter is an optical instrument, optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as Interferometry, interferometers, also finding widespread application in fibre optic telecommunications. Designs In its most common form, a cube, a beam splitter is made from two triangular glass prism (optics), prisms which are glued together at their base using polyester, epoxy, or urethane-based adhesives. (Before these synthetic resins, natural ones were used, e.g. Canada balsam.) The thickness of the resin layer is adjusted such that (for a certain wavelength) half of the light incident through one "port" (i.e., face of the cube) is reflection (physics), reflected and the other half is transmitted due to Total internal reflection#Frustrated_TIR, FTIR (frustrated total internal reflection). polarizer, Polarizing beam splitters, such as the Wollaston prism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding the nucleus, and sometimes a Comet tail, tail of gas and dust gas blown out from the coma. These phenomena are due to the effects of solar radiation and the outstreaming solar wind plasma acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently close and bright, a comet may be seen from Earth without the aid of a telescope and can Subtended angle, subtend an arc of up to 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures and religion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Guide Star
In astronomy, a guide star is a reference star used to accurately maintain the tracking by a telescope of a celestial body, whose apparent motion through the sky is primarily due to Earth's rotation. Accurate telescope pointing and tracking is critical for obtaining good astronomical images and astrophotographs. However, because Earth rotates, the sky appears to be in a constant state of motion relative to Earth. Although this movement appears to be relatively slow when viewed with the naked eye, with the high magnification and consequently smaller field of view provided by even a small telescope, this motion becomes apparent on timescales of the order of seconds. Though space telescopes are not mounted on a spinning planet, they still use guide stars including those listed in the HST Guide Star Catalog. Computer-controlled electric motors are commonly employed to allow the telescope to move in sync with the apparent motion of the sky, according to a pre-computed pointing m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Telescope Mount
A telescope mount is a mechanical structure which supports a telescope. Telescope mounts are designed to support the mass of the telescope and allow for accurate pointing of the instrument. Many sorts of mounts have been developed over the years, with the majority of effort being put into systems that can track the motion of the fixed stars as the Earth rotates. Fixed mounts Fixed telescope mounts are entirely fixed in one position, such as Zenith telescopes that point only straight up and the National Radio Astronomy Observatory's Green Bank fixed radio ' horn' built to observe Cassiopeia A. Fixed altitude mounts Fixed-altitude mounts usually have the primary optics fixed at an altitude angle while rotating horizontally (in azimuth). They can cover the whole sky but only observe objects for the short time when that object passes a specific altitude and azimuth. Transit mounts Transit mounts are single axis mounts fixed in azimuth while rotating in altitude, usually ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Altazimuth Mount
An altazimuth mount or alt-azimuth mount is a simple two- axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth (compass bearing) of the pointing direction of the instrument. Rotation about the horizontal axis varies the altitude angle (angle of elevation) of the pointing direction. These mounts are used, for example, with telescopes, cameras, radio antennas, heliostat mirrors, solar panels, and guns and similar weapons. Several names are given to this kind of mount, including altitude-azimuth, azimuth-elevation and various abbreviations thereof. A gun turret is essentially an alt-azimuth mount for a gun, and a standard camera tripod is an alt-azimuth mount as well. Astronomical telescope altazimuth mounts When used as an astronomical telescope mount, the biggest advantage of an alt-azimuth mount is the simplicity of its mechanical design. The primar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equatorial Mount
An equatorial mount is a mount for instruments that compensates for Earth's rotation by having one rotational axis, called ''polar axis'', parallel to the Earth's axis of rotation. This type of mount is used for astronomical telescope mount, telescopes and cameras. The advantage of an equatorial mount lies in its ability to allow the instrument attached to it to stay fixed on any celestial object with diurnal motion by driving one axis at a constant speed. Such an arrangement is called a ''sidereal drive'' or ''clock drive''. Equatorial mounts achieve this by aligning their rotational axis with the Earth, a process known as ''polar alignment''. Astronomical telescope mounts In astronomical telescope mounts, the equatorial axis (the ''right ascension'') is paired with a second perpendicular coordinate axis, axis of motion (known as the ''declination''). The equatorial axis of the mount is often equipped with a motorized "''clock drive''", that rotates that axis one revolution e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]