19th Century In Paris
   HOME



picture info

19th Century In Paris
19 (nineteen) is the natural number following 18 and preceding 20. It is a prime number. Mathematics Nineteen is the eighth prime number. Number theory 19 forms a twin prime with 17, a cousin prime with 23, and a sexy prime with 13. 19 is the fifth central trinomial coefficient, and the maximum number of fourth powers needed to sum up to any natural number (see, Waring's problem). It is the number of compositions of 8 into distinct parts. 19 is the eighth strictly non-palindromic number in any base, following 11 and preceding 47. 19 is also the second octahedral number, after 6, and the sixth Heegner number. In the Engel expansion of pi, 19 is the seventh term following and preceding . The sum of the first terms preceding 17 is in equivalence with 19, where its prime index (8) are the two previous members in the sequence. Prime properties 19 is the seventh Mersenne prime exponent. It is the second Keith number, and more specifically the first Keith prim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonadecimal
There are many different numeral systems, that is, writing systems for expressing numbers. By culture / time period "A ''base'' is a natural number B whose ''powers'' (B multiplied by itself some number of times) are specially designated within a numerical system." The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base). By type of notation Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base. Standard positional numeral systems The common names are derived Hexadecimal#Etymology, somewhat arbitrarily from a mix of Latin and Greek language, Greek, in some cases incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Palindromic Number
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16361) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, ... . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . In any base there are infinitely many palindromic numbers, since ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Full Reptend Prime
In number theory, a full reptend prime, full repetend prime, proper primeDickson, Leonard E., 1952, ''History of the Theory of Numbers, Volume 1'', Chelsea Public. Co. or long prime in base ''b'' is an odd prime number ''p'' such that the Fermat quotient : q_p(b) = \frac (where ''p'' does not divide ''b'') gives a cyclic number. Therefore, the base ''b'' expansion of 1/p repeats the digits of the corresponding cyclic number infinitely, as does that of a/p with rotation of the digits for any ''a'' between 1 and ''p'' − 1. The cyclic number corresponding to prime ''p'' will possess ''p'' − 1 digits if and only if ''p'' is a full reptend prime. That is, the multiplicative order = ''p'' − 1, which is equivalent to ''b'' being a primitive root modulo ''p''. The term "long prime" was used by John Conway and Richard Guy in their ''Book of Numbers''.


Base 10

< ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base Ten
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Keith Number
In recreational mathematics, a Keith number or repfigit number (short for repetitive Fibonacci-like digit) is a natural number n in a given number base b with k digits such that when a sequence is created such that the first k terms are the k digits of n and each subsequent term is the sum of the previous k terms, n is part of the sequence. Keith numbers were introduced by Mike Keith in 1987. They are computationally very challenging to find, with only about 125 known. Definition Let n be a natural number, let k = \lfloor \log_ \rfloor + 1 be the number of digits of n in base b, and let :d_i = \frac be the value of each digit of n. We define the sequence S(i) by a linear recurrence relation. For 0 \leq i bool: """Determine if a number in a particular base is a Keith number.""" if x 0: return True sequence = [] y = x while y > 0: sequence.append(y % b) y = y // b digit_count = len(sequence) sequence.reverse() whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If is a composite number then so is . Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form for some prime . The exponents which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... . Numbers of the form without the primality requirement may be called Mersenne numbers. Sometimes, however, Mersenne numbers are defined to have the additional requirement that should be prime. The smallest composite Mersenne number with prime exponent ''n'' is . Mersenne primes were studied in antiquity because of their close connection to perfect numbers: the Euclid–Eule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1991 (number)
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000. A group of one thousand units is sometimes known, from Ancient Greek, as a chiliad. A period of one thousand years may be known as a chiliad or, more often from Latin, as a millennium. The number 1000 is also sometimes described as a short thousand in medieval contexts where it is necessary to distinguish the Germanic concept of 1200 as a long thousand. It is the first 4-digit integer. Notation * The decimal representation for one thousand is ** 1000—a one followed by three zeros, in the general notation; ** 1 × 103—in engineering notation, which for this number coincides with: ** 1 × 103 exactly—in scientific normalized exponential notation; ** 1 E+3 exactly—in scientific E notation. * The SI prefix for a thousand units is "kilo-", abbre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




300 (number)
300 (three hundred) is the natural number following 299 and preceding 301. In Mathematics 300 is a composite number and the 24th triangular number. It is also a second hexagonal number. Integers from 301 to 399 300s 301 302 303 304 305 306 307 308 309 310s 310 311 312 313 314 315 315 = 32 × 5 × 7 = D_ \!, rencontres number, highly composite odd number, having 12 divisors. It is a Harshad number, as it is divisible by the sum of its digits. It is a Zuckerman number, as it is divisible by the product of its digits. 316 316 = 22 × 79, a centered triangular number and a centered heptagonal number. 317 317 is a prime number, Eisenstein prime with no imaginary part, Chen prime, one of the rare primes to be both right and left-truncatable, and a strictly non-palindromic number. 317 is the exponent (and number of ones) in the fourth base-10 repunit prime. 318 319 319 = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engel Expansion
The Engel expansion of a positive real number ''x'' is the unique non-decreasing sequence of positive integers (a_1,a_2,a_3,\dots) such that :x=\frac+\frac+\frac+\cdots = \frac\!\left(1 + \frac\!\left(1 + \frac\left(1+\cdots\right)\right)\right) For instance, Euler's number ''e'' has the Engel expansion :1, 1, 2, 3, 4, 5, 6, 7, 8, ... corresponding to the infinite series :e=\frac+\frac+\frac+\frac+\frac+\cdots Rational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion. If ''x'' is rational, its Engel expansion provides a representation of ''x'' as an Egyptian fraction. Engel expansions are named after Friedrich Engel, who studied them in 1913. An expansion analogous to an Engel expansion, in which alternating terms are negative, is called a Pierce expansion. Engel expansions, continued fractions, and Fibonacci observe that an Engel expansion can also be written as an ascending variant of a continued fraction: :x = \cfra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heegner Number
In number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ..., a Heegner number (as termed by Conway and Guy) is a square-free positive integer ''d'' such that the imaginary quadratic field \Q\left sqrt\right/math> has class number 1. Equivalently, the ring of algebraic integers of \Q\left sqrt\right/math> has unique factorization. The determination of such numbers is a special case of the class number problem, and they underlie several striking results in number theory. According to the (Baker–) Stark–Heegner theorem there are precisely nine Heegner numbers: This result was conjectured by Gauss and proved up to minor flaws by Kurt Heegner in 1952. Alan Baker and Harold Stark independently proved the result in 1966, and Stark further indicated that the gap in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octahedral Number
In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The th octahedral number O_n can be obtained by the formula:. :O_n=. The first few octahedral numbers are: :1 (number), 1, 6 (number), 6, 19 (number), 19, 44 (number), 44, 85 (number), 85, 146, 231, 344, 489, 670, 891 . Properties and applications The octahedral numbers have a generating function : \frac = \sum_^ O_n z^n = z +6z^2 + 19z^3 + \cdots . Sir Frederick Pollock, 1st Baronet, Sir Frederick Pollock conjectured in 1850 that every positive integer is the sum of at most 7 octahedral numbers. This statement, the Pollock octahedral numbers conjecture, has been proven true for all but finitely many numbers. In chemistry, octahedral numbers may be used to describe the numbers of atoms in octahedral clusters; in this context they are called Magic number (chemistry), magic numbers.. Relation to other figurate numbers Square p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]