Brun–Titchmarsh Theorem
   HOME
*





Brun–Titchmarsh Theorem
In analytic number theory, the Brun–Titchmarsh theorem, named after Viggo Brun and Edward Charles Titchmarsh, is an upper bound on the distribution of prime numbers in arithmetic progression. Statement Let \pi(x;q,a) count the number of primes ''p'' congruent to ''a'' modulo ''q'' with ''p'' ≤ ''x''. Then :\pi(x;q,a) \le for all ''q'' < ''x''.


History

The result was proven by sieve methods by Montgomery and Vaughan; an earlier result of Brun and Titchmarsh obtained a weaker version of this inequality with an additional multiplicative factor of 1+o(1).


Improvements

If ''q'' is relatively small, e.g., q\le x^, then there exists a better bound: :\pi(x;q,a)\le This is due to Y. Motohashi (1973). He used a bilinear structure in the error term in the

Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. * Additive num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viggo Brun
Viggo Brun (13 October 1885 – 15 August 1978) was a Norwegian professor, mathematician and number theorist. Contributions In 1915, he introduced a new method, based on Legendre's version of the sieve of Eratosthenes, now known as the ''Brun sieve'', which addresses additive problems such as Goldbach's conjecture and the twin prime conjecture. He used it to prove that there exist infinitely many integers ''n'' such that ''n'' and ''n''+2 have at most nine prime factors, and that all large even integers are the sum of two numbers with at most nine prime factors. He also showed that the sum of the reciprocals of twin primes converges to a finite value, now called Brun's constant: by contrast, the sum of the reciprocals of all primes is divergent. He developed a multi-dimensional continued fraction algorithm in 1919–1920 and applied this to problems in musical theory. He also served as praeses of the Royal Norwegian Society of Sciences and Letters in 1946. Biography B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward Charles Titchmarsh
Edward Charles "Ted" Titchmarsh (June 1, 1899 – January 18, 1963) was a leading British mathematician. Education Titchmarsh was educated at King Edward VII School (Sheffield) and Balliol College, Oxford, where he began his studies in October 1917. Career Titchmarsh was known for work in analytic number theory, Fourier analysis and other parts of mathematical analysis. He wrote several classic books in these areas; his book on the Riemann zeta-function was reissued in an edition edited by Roger Heath-Brown. Titchmarsh was Savilian Professor of Geometry at the University of Oxford from 1932 to 1963. He was a Plenary Speaker at the ICM in 1954 in Amsterdam. He was on the governing body of Abingdon School from 1935-1947. Awards *Fellow of the Royal Society, 1931 *De Morgan Medal, 1953 *Sylvester Medal The Sylvester Medal is a bronze medal awarded by the Royal Society (London) for the encouragement of mathematical research, and accompanied by a £1,000 prize. It was named ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Upper Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that . Every subset of the natural numbers has a lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primes In Arithmetic Progression
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a_n = 3 + 4n for 0 \le n \le 2. According to the Green–Tao theorem, there exist arbitrarily long sequences of primes in arithmetic progression. Sometimes the phrase may also be used about primes which belong to an arithmetic progression which also contains composite numbers. For example, it can be used about primes in an arithmetic progression of the form an + b, where ''a'' and ''b'' are coprime which according to Dirichlet's theorem on arithmetic progressions contains infinitely many primes, along with infinitely many composites. For integer ''k'' ≥ 3, an AP-''k'' (also called PAP-''k'') is any sequence of ''k'' primes in arithmetic progression. An AP-''k'' can be written as ''k'' primes of the form ''a''·''n'' + ''b'', for fixed integers ''a'' (called th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sieve Theory
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit ''X''. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms. In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be. One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Selberg Sieve
In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s. Description In terms of sieve theory the Selberg sieve is of ''combinatorial type'': that is, derives from a careful use of the inclusion–exclusion principle. Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem. The result gives an ''upper bound'' for the size of the sifted set. Let A be a set of positive integers \le x and let P be a set of primes. Let A_d denote the set of elements of A divisible by d when d is a product of distinct primes from P. Further let A_1 denote A itself. Let z be a positive real number and P(z) denote the product of the primes in P which are \le z. The object of the sieve is to estimate :S(A,P,z) = \left\vert A \setminus \bigc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henryk Iwaniec
Henryk Iwaniec (born October 9, 1947) is a Polish-American mathematician, and since 1987 a professor at Rutgers University. Background and education Iwaniec studied at the University of Warsaw, where he got his PhD in 1972 under Andrzej Schinzel. He then held positions at the Institute of Mathematics of the Polish Academy of Sciences until 1983 when he left Poland. He held visiting positions at the Institute for Advanced Study, University of Michigan, and University of Colorado Boulder before being appointed Professor of Mathematics at Rutgers University. He is a citizen of both Poland and the United States. He and mathematician Tadeusz Iwaniec are twin brothers. Work Iwaniec studies both sieve methods and deep complex-analytic techniques, with an emphasis on the theory of automorphic forms and harmonic analysis. In 1997, Iwaniec and John Friedlander proved that there are infinitely many prime numbers of the form . Results of this strength had previously been seen as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet's Theorem On Arithmetic Progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers ''a'' and ''d'', there are infinitely many primes of the form ''a'' + ''nd'', where ''n'' is also a positive integer. In other words, there are infinitely many primes that are congruent to ''a'' modulo ''d''. The numbers of the form ''a'' + ''nd'' form an arithmetic progression :a,\ a+d,\ a+2d,\ a+3d,\ \dots,\ and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem, named after Peter Gustav Lejeune Dirichlet, extends Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Siegel–Walfisz Theorem
In analytic number theory, the Siegel–Walfisz theorem was obtained by Arnold Walfisz as an application of a theorem by Carl Ludwig Siegel to primes in arithmetic progressions. It is a refinement both of the prime number theorem and of Dirichlet's theorem on primes in arithmetic progressions. Statement Define :\psi(x;q,a) = \sum_\Lambda(n), where \Lambda denotes the von Mangoldt function, and let ''φ'' denote Euler's totient function. Then the theorem states that given any real number ''N'' there exists a positive constant ''C''''N'' depending only on ''N'' such that :\psi(x;q,a)=\frac+O\left(x\exp\left(-C_N(\log x)^\frac\right)\right), whenever (''a'', ''q'') = 1 and :q\le(\log x)^N. Remarks The constant ''C''''N'' is not effectively computable because Siegel's theorem is ineffective. From the theorem we can deduce the following bound regarding the prime number theorem for arithmetic progressions: If, for (''a'', ''q'') = 1, by \pi(x;q,a) we denote the nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematika
''Mathematika'' is a peer-reviewed mathematics journal that publishes both pure and applied mathematical articles. The journal was founded by Harold Davenport in the 1950s. The journal is published by the London Mathematical Society, on behalf of the journal's owner University College London. Indexing and abstracting According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.844. The journal in indexing in the following bibliographic databases: * MathSciNet * Science Citation Index Expanded * Web of Science * Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastruct ... References {{reflist London Mathematical Society Mathematics education in the United Kingdom Mathematics journals Publications established in 1954 Quarterly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Analytic Number Theory
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]