HOME
*





Boolean-valued Model
In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take values in some fixed complete Boolean algebra. Boolean-valued models were introduced by Dana Scott, Robert M. Solovay, and Petr Vopěnka in the 1960s in order to help understand Paul Cohen's method of forcing. They are also related to Heyting algebra semantics in intuitionistic logic. Definition Fix a complete Boolean algebra ''B''''B'' here is assumed to be ''nondegenerate''; that is, 0 and 1 must be distinct elements of ''B''. Authors writing on Boolean-valued models typically take this requirement to be part of the definition of "Boolean algebra", but authors writing on Boolean algebras in general often do not. and a first-order language ''L''; the signature of ''L'' will consist of a collection of constant symbols, function symbols, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term. In model theory, atomic formulas are merely strings of symbols with a given signature, which may or may not be satisfiable with respect to a give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transitive Set
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions hold: * whenever x \in A, and y \in x, then y \in A. * whenever x \in A, and x is not an urelement, then x is a subset of A. Similarly, a class M is transitive if every element of M is a subset of M. Examples Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class. Any of the stages V_\alpha and L_\alpha leading to the construction of the von Neumann universe V and Gödel's constructible universe L are transitive sets. The universes V and L themselves are transitive classes. This is a complete list of all finite transitive sets with up to 20 brackets: * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''incompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generic Filter
In the mathematical field of set theory, a generic filter is a kind of object used in the theory of forcing, a technique used for many purposes, but especially to establish the independence of certain propositions from certain formal theories, such as ZFC. For example, Paul Cohen used forcing to establish that ZFC, if consistent, cannot prove the continuum hypothesis, which states that there are exactly aleph-one real numbers. In the contemporary re-interpretation of Cohen's proof, it proceeds by constructing a generic filter that codes more than \aleph_1 reals, without changing the value of \aleph_1. Formally, let ''P'' be a partially ordered set, and let ''F'' be a filter on ''P''; that is, ''F'' is a subset of ''P'' such that: #''F'' is nonempty #If ''p'', ''q'' ∈ ''P'' and ''p'' ≤ ''q'' and ''p'' is an element of ''F'', then ''q'' is an element of ''F'' (''F'' is closed upward) #If ''p'' and ''q'' are elements of ''F'', then there is an eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Independence (mathematical Logic)
In mathematical logic, independence is the unprovability of a sentence from other sentences. A sentence σ is independent of a given first-order theory ''T'' if ''T'' neither proves nor refutes σ; that is, it is impossible to prove σ from ''T'', and it is also impossible to prove from ''T'' that σ is false. Sometimes, σ is said (synonymously) to be undecidable from ''T''; this is not the same meaning of " decidability" as in a decision problem. A theory ''T'' is independent if each axiom in ''T'' is not provable from the remaining axioms in ''T''. A theory for which there is an independent set of axioms is independently axiomatizable. Usage note Some authors say that σ is independent of ''T'' when ''T'' simply cannot prove σ, and do not necessarily assert by this that ''T'' cannot refute σ. These authors will sometimes say "σ is independent of and consistent with ''T''" to indicate that ''T'' can neither prove nor refute σ. Independence results in set theory Many inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mostowski Collapse
In mathematical logic, the Mostowski collapse lemma, also known as the Shepherdson–Mostowski collapse, is a theorem of set theory introduced by and . Statement Suppose that ''R'' is a binary relation on a class ''X'' such that *''R'' is set-like: ''R''−1 'x''= is a set for every ''x'', *''R'' is well-founded: every nonempty subset ''S'' of ''X'' contains an ''R''-minimal element (i.e. an element ''x'' ∈ ''S'' such that ''R''−1 'x''∩ ''S'' is empty), *''R'' is extensional: ''R''−1 'x''≠ ''R''−1 'y''for every distinct elements ''x'' and ''y'' of ''X'' The Mostowski collapse lemma states that for every such ''R'' there exists a unique transitive class (possibly proper) whose structure under the membership relation is isomorphic to (''X'', ''R''), and the isomorphism is unique. The isomorphism maps each element ''x'' of ''X'' to the set of images of elements ''y'' of ''X'' such that ''y R x'' (Jech 2003:69). Generalizations Every well-founded set-like relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from conta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cumulative Hierarchy
In mathematics, specifically set theory, a cumulative hierarchy is a family of sets W_\alpha indexed by ordinals \alpha such that * W_\alpha \subseteq W_ * If \lambda is a limit ordinal, then W_\lambda = \bigcup_ W_ Some authors additionally require that W_ \subseteq \mathcal P(W_\alpha) or that W_0 \ne \emptyset. The union W = \bigcup_ W_\alpha of the sets of a cumulative hierarchy is often used as a model of set theory. The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy \mathrm_\alpha of the von Neumann universe with \mathrm_ = \mathcal P(W_\alpha) introduced by . Reflection principle A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union W of the hierarchy also holds in some stages W_\alpha. Examples * The von Neumann universe is built from a cumulative hierarchy \mathrm_\alpha. *The sets \mathrm_\alpha of the constructible universe form a cumulative hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Class
Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for algebraic varieties * Proper transfer function, a transfer function in control theory in which the degree of the numerator does not exceed the degree of the denominator * Proper equilibrium, in game theory, a refinement of the Nash equilibrium * Proper subset * Proper space * Proper complex random variable Other uses * Proper (liturgy), the part of a Christian liturgy that is specific to the date within the Liturgical Year * Proper frame, such system of reference in which object is stationary (non moving), sometimes also called a co-moving frame * Proper (heraldry), in heraldry, means depicted in natural colors * Proper Records, a UK record label * Proper (album), an album by Into It. Over It. released in 2011 * Proper (often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]