HOME





Bunyakovsky Conjecture
The Bunyakovsky conjecture (or Bouniakowsky conjecture) gives a criterion for a polynomial f(x) in one variable with integer coefficients to give infinitely many prime values in the sequencef(1), f(2), f(3),\ldots. It was stated in 1857 by the Russian mathematician Viktor Bunyakovsky. The following three conditions are necessary for f(x) to have the desired prime-producing property: # The leading coefficient is positive, # The polynomial is irreducible over the rationals (and integers), and # There is no common factor for all the infinitely many values f(1), f(2), f(3),\ldots. (In particular, the coefficients of f(x) should be relatively prime. It is not necessary for the values f(n) to be pairwise relatively prime.) Bunyakovsky's conjecture is that these conditions are sufficient: if f(x) satisfies (1)–(3), then f(n) is prime for infinitely many positive integers n. A seemingly weaker yet equivalent statement to Bunyakovsky's conjecture is that for every integer polyno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Integer-valued Polynomial
In mathematics, an integer-valued polynomial (also known as a numerical polynomial) P(t) is a polynomial whose value P(n) is an integer for every integer ''n''. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial : P(t) = \frac t^2 + \frac t=\fract(t+1) takes on integer values whenever ''t'' is an integer. That is because one of ''t'' and t + 1 must be an even number. (The values this polynomial takes are the triangular numbers.) Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.. See in particular pp. 213–214. Classification The class of integer-valued polynomials was described fully by . Inside the polynomial ring \Q /math> of polynomials with rational number coefficients, the subring of integer-valued polynomials is a free abelian group. It has as basis the polynomials :P_k(t) = t(t-1)\cdots (t-k+1)/k! for k = 0,1,2, \dots, i.e. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Ulam Spiral
The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's ''Mathematical Games'' column in ''Scientific American'' a short time later. It is constructed by writing the positive integers in a square spiral and specially marking the prime numbers. Ulam and Gardner emphasized the striking appearance in the spiral of prominent diagonal, horizontal, and vertical lines containing large numbers of primes. Both Ulam and Gardner noted that the existence of such prominent lines is not unexpected, as lines in the spiral correspond to quadratic polynomials, and certain such polynomials, such as Euler's prime-generating polynomial ''x''2 − ''x'' + 41, are believed to produce a high density of prime numbers. Nevertheless, the Ulam spiral is connected with major unsolved problems in number theory such as Landau's problems. In particular, no quadratic polynomial has ever ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cohn's Irreducibility Criterion
Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in \mathbb ">/math>—that is, for it to be unfactorable into the product of lower- degree polynomials with integer coefficients. Statement The criterion is often stated as follows: :If a prime number p is expressed in base 10 as p = a_m 10^m + a_ 10^ +\cdots+ a_1 10 + a_0 (where 0\leq a_i\leq 9) then the polynomial ::f(x)=a_mx^m+a_x^+\cdots+a_1x+a_0 :is irreducible in \mathbb /math>. The theorem can be generalized to other bases as follows: :Assume that b \ge 2 is a natural number and p(x) = a_k x^k + a_ x^ +\cdots+ a_1 x + a_0 is a polynomial such that 0\leq a_i \leq b-1. If p(b) is a prime number then p(x) is irreducible in \mathbb /math>. History and extensions The base 10 version of the theorem is attributed to Cohn by Pólya and Szegő in ''Problems and Theorems in Analysis'' English translation in: while the generalization to any base ''b'' is due to Brillhart, Filaseta, and O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Integer-valued Polynomial
In mathematics, an integer-valued polynomial (also known as a numerical polynomial) P(t) is a polynomial whose value P(n) is an integer for every integer ''n''. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial : P(t) = \frac t^2 + \frac t=\fract(t+1) takes on integer values whenever ''t'' is an integer. That is because one of ''t'' and t + 1 must be an even number. (The values this polynomial takes are the triangular numbers.) Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.. See in particular pp. 213–214. Classification The class of integer-valued polynomials was described fully by . Inside the polynomial ring \Q /math> of polynomials with rational number coefficients, the subring of integer-valued polynomials is a free abelian group. It has as basis the polynomials :P_k(t) = t(t-1)\cdots (t-k+1)/k! for k = 0,1,2, \dots, i.e. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see Order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Euler's Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cyclotomic Polynomial
In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primitive roots of unity e^ , where ''k'' runs over the positive integers less than ''n'' and coprime to ''n'' (and ''i'' is the imaginary unit). In other words, the ''n''th cyclotomic polynomial is equal to : \Phi_n(x) = \prod_\stackrel \left(x-e^\right). It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive ''n''th-root of unity ( e^ is an example of such a root). An important relation linking cyclotomic polynomials and primitive roots of unity is :\prod_\Phi_d(x) = x^n - 1, showing that x is a root of x^n - 1 if and only if it is a ''d''th primitive root of unity for some ''d'' that divides ''n''. Examples If ''n'' is a prim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Landau's Problems
At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows: # Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two primes? # Twin prime conjecture: Are there infinitely many primes ''p'' such that ''p'' + 2 is prime? # Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares? # Are there infinitely many primes ''p'' such that ''p'' − 1 is a perfect square? In other words: Are there infinitely many primes of the form ''n''2 + 1? , all four problems are unresolved. Progress toward solutions Goldbach's conjecture Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Gold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009, and is its chairman. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 370,000 sequences, and is growing by approximately 30 entries per day. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. There is also an advanced search function called SuperSeeker which runs a large number of different algorithms to identify sequences related to the input. History Neil Sloane started coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]