Binary Quadratic Form
In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables : q(x,y)=ax^2+bxy+cy^2, \, where ''a'', ''b'', ''c'' are the coefficients. When the coefficients can be arbitrary complex numbers, most results are not specific to the case of two variables, so they are described in quadratic form. A quadratic form with integer coefficients is called an integral binary quadratic form, often abbreviated to ''binary quadratic form''. This article is entirely devoted to integral binary quadratic forms. This choice is motivated by their status as the driving force behind the development of algebraic number theory. Since the late nineteenth century, binary quadratic forms have given up their preeminence in algebraic number theory to quadratic and more general number fields, but advances specific to binary quadratic forms still occur on occasion. Pierre Fermat stated that if p is an odd prime then the equation p = x^2 + y^2 has a solution iff p \equ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Diophantus
Diophantus of Alexandria () (; ) was a Greek mathematician who was the author of the '' Arithmetica'' in thirteen books, ten of which are still extant, made up of arithmetical problems that are solved through algebraic equations. Although Joseph-Louis Lagrange called Diophantus "the inventor of algebra" he did not invent it; however, his exposition became the standard within the Neoplatonic schools of Late antiquity, and its translation into Arabic in the 9th century AD and had influence in the development of later algebra: Diophantus' method of solution matches medieval Arabic algebra in its concepts and overall procedure. The 1621 edition of ''Arithmetica'' by Bachet gained fame after Pierre de Fermat wrote his famous " Last Theorem" in the margins of his copy. In modern use, Diophantine equations are algebraic equations with integer coefficients for which integer solutions are sought. Diophantine geometry and Diophantine approximations are two other subareas of number theo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Brahmagupta's Identity
In algebra, Brahmagupta's identity says that, for given n, the product of two numbers of the form a^2+nb^2 is itself a number of that form. In other words, the set of such numbers is closed under multiplication. Specifically: :\begin \left(a^2 + nb^2\right)\left(c^2 + nd^2\right) & = \left(ac-nbd\right)^2 + n\left(ad+bc\right)^2 & & & (1) \\ & = \left(ac+nbd\right)^2 + n\left(ad-bc\right)^2, & & & (2) \end Both (1) and (2) can be verified by expanding each side of the equation. Also, (2) can be obtained from (1), or (1) from (2), by changing ''b'' to −''b''. This identity holds in both the ring of integers and the ring of rational numbers, and more generally in any commutative ring. History The identity is a generalization of the so-called Fibonacci identity (where ''n''=1) which is actually found in Diophantus' ''Arithmetica'' (III, 19). That identity was rediscovered by Brahmagupta (598–668), an Indian mathem ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ideal Class Group
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integr ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Narrow Class Group
In algebraic number theory, the narrow class group of a number field ''K'' is a refinement of the class group of ''K'' that takes into account some information about embeddings of ''K'' into the field of real numbers. Formal definition Suppose that ''K'' is a finite extension of Q. Recall that the ordinary class group of ''K'' is defined as the quotient :C_K = I_K / P_K,\,\! where ''I''''K'' is the group of fractional ideals of ''K'', and ''P''''K'' is the subgroup of principal fractional ideals of ''K'', that is, ideals of the form ''aO''''K'' where ''a'' is an element of ''K''. The narrow class group is defined to be the quotient :C_K^+ = I_K / P_K^+, where now ''P''''K''+ is the group of totally positive principal fractional ideals of ''K''; that is, ideals of the form ''aO''''K'' where ''a'' is an element of ''K'' such that σ(''a'') is ''positive'' for every embedding :\sigma : K \to \mathbb. Uses The narrow class group features prominently in the theory of repre ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Class Group
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Binary Operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary function that maps every pair of elements of the set to an element of the set. Examples include the familiar arithmetic operations like addition, subtraction, multiplication, set operations like union, complement, intersection. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. A binary function that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Binary operations are the keystone of most structures that are studied in algebra, in parti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Disquisitiones Arithmeticae
(Latin for ''Arithmetical Investigations'') is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory. In this book, Gauss brought together and reconciled results in number theory obtained by such eminent mathematicians as Fermat, Euler, Lagrange, and Legendre, while adding profound and original results of his own. Scope The ''Disquisitiones'' covers both elementary number theory and parts of the area of mathematics now called algebraic number theory. Gauss did not explicitly recognize the concept of a group, which is central to modern algebra, so he did not use this term. His own title for his subject was Higher Arithmetic. In his Preface to the ''Disquisitiones'', Gauss describes the scope of the book as follows: Gauss also writes, "When confronting man ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Representative (mathematics)
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence rel ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |