HOME





Bessel Polynomials
In mathematics, the Bessel polynomials are an orthogonal polynomials, orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series :y_n(x)=\sum_^n\frac\,\left(\frac\right)^k. Another definition, favored by electrical engineers, is sometimes known as the reverse Bessel polynomials :\theta_n(x)=x^n\,y_n(1/x)=\sum_^n\frac\,\frac. The coefficients of the second definition are the same as the first but in reverse order. For example, the third-degree Bessel polynomial is :y_3(x)=1+6x+15x^2+15x^3 while the third-degree reverse Bessel polynomial is :\theta_3(x)=x^3+6x^2+15x+15. The reverse Bessel polynomial is used in the design of Bessel filter, Bessel electronic filters. Properties Definition in terms of Bessel functions The Bessel polynomial may also be defined using Bessel functions from which the polynomial draws its name. :y_n(x)=\,x^\theta_n(1/x)\, :y_n(x)=\sqrt\,e^K_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ... to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. These are frequently given by the Rodrigues' formula. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Bessel Filter
In electronics and signal processing, a Bessel filter is a type of analog linear filter with a maximally flat Group delay and phase delay, group delay (i.e., maximally linear phase response), which preserves the wave shape of filtered signals in the passband. Bessel filters are often used in audio crossover systems. The filter's name is a reference to German mathematician Friedrich Bessel (1784–1846), who developed the mathematical theory on which the filter is based. The filters are also called Bessel–Thomson filters in recognition of W. E. Thomson, who worked out how to apply Bessel functions to filter design in 1949. The Bessel filter is very similar to the Gaussian filter, and tends towards the same shape as filter order increases. While the time-domain step response of the Gaussian filter has zero overshoot (signal), overshoot, the Bessel filter has a small amount of overshoot, but still much less than other common frequency-domain filters, such as Butterworth filters. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Bessel Function
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arises when finding separa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Confluent Hypergeometric Function
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term ''confluent'' refers to the merging of singular points of families of differential equations; ''confluere'' is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions: * Kummer's (confluent hypergeometric) function , introduced by , is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name. * Tricomi's (confluent hypergeometric) function introduced by , sometimes denoted by , is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind. * Whittaker functions (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Laguerre Polynomial
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: xy'' + (1 - x)y' + ny = 0,\ y = y(x) which is a second-order linear differential equation. This equation has nonsingular solutions only if is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of xy'' + (\alpha + 1 - x)y' + ny = 0~. where is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin). More generally, a Laguerre function is a solution when is not necessarily a non-negative integer. The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form \int_0^\infty f(x) e^ \, dx. These polynomials, usually denoted , , ..., are a polynomial sequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Change Of Basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector on one basis is, in general, different from the coordinate vector that represents on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis. Such a conversion results from the ''change-of-basis formula'' which expresses the coordinates relative to one basis in terms of coordinates relative to the other basis. Using matrices, this formula can be written :\mathbf x_\mathrm = A \,\mathbf x_\mathrm, where "old" and "new" refer respectively to the initially defined basis and the other basis, \mathbf x_\mathrm and \mathbf x_\mathrm are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Neumann Polynomial
In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case \alpha=0, are a sequence of polynomials in 1/t used to expand functions in term of Bessel functions. The first few polynomials are :O_0^(t)=\frac 1 t, :O_1^(t)=2\frac , :O_2^(t)=\frac + 4\frac , :O_3^(t)=2\frac + 8\frac , :O_4^(t)=\frac + 4\frac + 16\frac . A general form for the polynomial is :O_n^(t)= \frac \sum_^ (-1)^\frac \left(\frac 2 t \right)^, and they have the "generating function" :\frac \frac 1 = \sum_O_n^(t) J_(z), where ''J'' are Bessel functions. To expand a function ''f'' in the form :f(z)=\left(\frac\right)^\alpha \sum_ a_n J_(z)\, for , t, , compute :a_n=\frac \oint_ f(t) O_n^(t)\,dt, where c' and ''c'' is the distance of the nearest singularity of ''f(z)'' from z=0 .


Examples

An example is the extension :\left(\tfracz\right)^s= \Gamma(s)\cdot\sum_(-1)^k J_(z)(s+2k), or the more gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Lommel Polynomial
A Lommel polynomial ''R''''m'',ν(''z'') is a polynomial in 1/''z'' giving the recurrence relation :\displaystyle J_(z) = J_\nu(z)R_(z) - J_(z)R_(z) where ''J''ν(''z'') is a Bessel function of the first kind. They are given explicitly by :R_(z) = \sum_^\frac(z/2)^. See also *Lommel function *Neumann polynomial In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case \alpha=0, are a sequence of polynomials in 1/t used to expand functions in term of Bessel functions. The first few polynomials are :O_0^(t)=\frac 1 t, :O_1^(t) ... References * * Polynomials Special functions {{polynomial-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]