Beltrami–Klein Model
   HOME



picture info

Beltrami–Klein Model
In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or ''n''-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere. It is analogous to the gnomonic projection of spherical geometry, in that geodesics (great circles in spherical geometry) are mapped to straight lines. This model is not conformal: angles are not faithfully represented, and circles become ellipses, increasingly flattened near the edge. This is in contrast to the Poincaré disk model, which is conformal. However, lines in the Poincaré model are not represented by straight line segments, but by arcs that meet the boundary orthogonally. The Beltrami–Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while "C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Klein Model
Klein may refer to: People *Klein (surname) * Klein (musician) Places * Klein (crater), a lunar feature * Klein, Montana, United States * Klein, Texas, United States * Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm * Klein River, a river in the Western Cape province of South Africa Business * Klein Bikes, a bicycle manufacturer * Klein Tools, a manufacturer * S. Klein, a department store * Klein Modellbahn, an Austrian model railway manufacturer Arts * Klein + M.B.O., an Italian musical group *Klein Award, for comic art *Yves Klein, French artist Mathematics *Klein bottle, an unusual shape in topology *Klein geometry * Klein configuration, in geometry * Klein cubic (other) * Klein graphs, in graph theory * Klein model, or Beltrami–Klein model, a model of hyperbolic geometry *Klein polyhedron, a generalization of continued fractions to higher dimensions, in the geometry of numbers *Klein surface, a dianalytic manifold of complex dimension 1 Other uses * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically used for lines and planes that intersect to form a right angle, whereas ''orthogonal'' is used in generalizations, such as ''orthogonal vectors'' or ''orthogonal curves''. ''Orthogonality'' is also used with various meanings that are often weakly related or not related at all with the mathematical meanings. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics Optics In optics, polarization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Distance And Metric Tensor
Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). The term is also frequently used metaphorically to mean a measurement of the amount of difference between two similar objects (such as statistical distance between probability distributions or edit distance between strings of text) or a degree of separation (as exemplified by distance between people in a social network). Most such notions of distance, both physical and metaphorical, are formalized in mathematics using the notion of a metric space. In the social sciences, distance can refer to a qualitative measurement of separation, such as social distance or psychological distance. Distances in physics and geometry The distance between physical locations can be defined in different ways in different contexts. Straight ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Nikolai Lobachevsky
Nikolai Ivanovich Lobachevsky (; , ; – ) was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for his fundamental study on Dirichlet integrals, known as the Lobachevsky integral formula. William Kingdon Clifford called Lobachevsky the "Copernicus of Geometry" due to the revolutionary character of his work. Biography Nikolai Lobachevsky was born either in or near the city of Nizhny Novgorod in the Russian Empire (now in Nizhny Novgorod Oblast, Russia) in 1792 to parents of Russian and Polish people, Polish origin – Ivan Maksimovich Lobachevsky and Praskovia Alexandrovna Lobachevskaya.Victor J. Katz. ''A history of mathematics: Introduction''. Addison-Wesley. 2009. p. 842.Stephen Hawking. God Created the Integers, ''God Created the Integers: The Mathematical Breakthroughs that Changed History''. Running Press. 2007. pp. 697–703. He was one of three children. When he was seven, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Karl Weierstrass
Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. He later received an honorary doctorate and became professor of mathematics in Berlin. Among many other contributions, Weierstrass formalized the definition of the continuity of a function and complex analysis, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals. Biography Weierstrass was born into a Roman Catholic family in Ostenfelde, a village near Ennigerloh, in the Province of Westphalia. Karl Weierstrass was the son of Wilhelm Weierstrass and Theodora Vonderforst, the former of whom was a government official and both of whom were Cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cayley–Klein Metric
In mathematics, a Cayley–Klein metric is a metric on the complement of a fixed quadric in a projective space which is defined using a cross-ratio. The construction originated with Arthur Cayley's essay "On the theory of distance" where he calls the quadric the absolute. The construction was developed in further detail by Felix Klein in papers in 1871 and 1873, and subsequent books and papers. The Cayley–Klein metrics are a unifying idea in geometry since the method is used to provide metrics in hyperbolic geometry, elliptic geometry, and Euclidean geometry. The field of non-Euclidean geometry rests largely on the footing provided by Cayley–Klein metrics. Foundations The algebra of throws by Karl von Staudt (1847) is an approach to geometry that is independent of metric. The idea was to use the relation of projective harmonic conjugates and cross-ratios as fundamental to the measure on a line. Another important insight was the Laguerre formula by Edmond Laguerre (1853), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Projective Geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''projective space'') and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "Point at infinity, points at infinity") to Euclidean points, and vice versa. Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translation (geometry), translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. Unlike in Euclidean geometry, the concept of an angle does not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Edmond Laguerre
Edmond Nicolas Laguerre (9 April 1834, Bar-le-Duc – 14 August 1886, Bar-le-Duc) was a French mathematician and a member of the Académie des sciences (1885). His main works were in the areas of geometry and complex analysis. He also investigated orthogonal polynomials (see Laguerre polynomials). Laguerre's method is a root-finding algorithm tailored to polynomials. He laid the foundations of a geometry of oriented spheres (Laguerre geometry and Laguerre plane), including the Laguerre transformation or transformation by reciprocal directions. Works Selection * * * * Théorie des équations numériques', Paris: Gauthier-Villars. 1884 on Google Books * * Oeuvres de Laguerrepubl. sous les auspices de l'Académie des sciences par MM. Charles Hermite, Henri Poincaré, et Eugène Rouché.'' (Paris, 1898-1905) (reprint: New York : Chelsea publ., 1972 ) Extensive lists More than 80 articleson Nundam.org.p See also * Isotropic line * ''q''-Laguerre polynomials * Bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cross-ratio
In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points , , , on a line, their cross ratio is defined as : (A,B;C,D) = \frac where an orientation of the line determines the sign of each distance and the distance is measured as projected into Euclidean space. (If one of the four points is the line's point at infinity, then the two distances involving that point are dropped from the formula.) The point is the harmonic conjugate of with respect to and precisely if the cross-ratio of the quadruple is , called the ''harmonic ratio''. The cross-ratio can therefore be regarded as measuring the quadruple's deviation from this ratio; hence the name ''anharmonic ratio''. The cross-ratio is preserved by linear fractional transformations. It is essentially the only projective invariant of a quadruple of collinear points; this underlies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Equiconsistency
In mathematical logic, two theory (mathematical logic), theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and Vice-versa, vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory ''T''. Instead we usually take a theory ''S'', believed to be consistent, and try to prove the weaker statement that if ''S'' is consistent then ''T'' must also be consistent—if we can do this we say that ''T'' is ''consistent relative to S''. If ''S'' is also consistent relative to ''T'' then we say that ''S'' and ''T'' are equiconsistent. Consistency In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency. David Hilbert, Hilbert proposed a Hilbert's program, program at the beginning of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]