Bayes Classifier
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. Definition Suppose a pair (X,Y) takes values in \mathbb^d \times \, where Y is the class label of an element whose features are given by X. Assume that the conditional distribution of ''X'', given that the label ''Y'' takes the value ''r'' is given by (X\mid Y=r) \sim P_r \quad \text \quad r=1,2,\dots,K where "\sim" means "is distributed as", and where P_r denotes a probability distribution. A classifier is a rule that assigns to an observation ''X''=''x'' a guess or estimate of what the unobserved label ''Y''=''r'' actually was. In theoretical terms, a classifier is a measurable function C: \mathbb^d \to \, with the interpretation that ''C'' classifies the point ''x'' to the class ''C''(''x''). The probability of misclassification, or risk, of a classifier ''C'' is defined as \mathcal(C) = \operatorname\. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Classification
When classification is performed by a computer, statistical methods are normally used to develop the algorithm. Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or ''features''. These properties may variously be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large", "medium" or "small"), integer-valued (e.g. the number of occurrences of a particular word in an email) or real-valued (e.g. a measurement of blood pressure). Other classifiers work by comparing observations to previous observations by means of a similarity or distance function. An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied. In statistics, where classi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Distribution
Conditional (if then) may refer to: * Causal conditional, if X then Y, where X is a cause of Y *Conditional probability, the probability of an event A given that another event B * Conditional proof, in logic: a proof that asserts a conditional, and proves that the antecedent leads to the consequent *Material conditional, in propositional calculus, or logical calculus in mathematics * Relevance conditional, in relevance logic * Conditional (computer programming), a statement or expression in computer programming languages *A conditional expression in computer programming languages such as ?: *Conditions in a contract A contract is an agreement that specifies certain legally enforceable rights and obligations pertaining to two or more parties. A contract typically involves consent to transfer of goods, services, money, or promise to transfer any of thos ... Grammar and linguistics * Conditional mood (or conditional tense), a verb form in many languages * Conditional se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classification Rule
Given a population whose members each belong to one of a number of different sets or classes, a classification rule or classifier is a procedure by which the elements of the population set are each predicted to belong to one of the classes. A perfect classification is one for which every element in the population is assigned to the class it really belongs to. The bayes classifier is the classifier which assigns classes optimally based on the known attributes (i.e. features or regressors) of the elements to be classified. A special kind of classification rule is binary classification, for problems in which there are only two classes. Testing classification rules Given a data set consisting of pairs ''x'' and ''y'', where ''x'' denotes an element of the population and ''y'' the class it belongs to, a classification rule ''h''(''x'') is a function that assigns each element ''x'' to a predicted class \hat=h(x). A binary classification is such that the label ''y'' can take only one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Risk (statistics)
Statistical risk is a quantification of a situation's risk using statistical methods. These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of the risk of the situation. Statistical risk is taken account of in a variety of contexts including finance and economics, and there are many risk functions that can be used depending on the context. One measure of the statistical risk of a continuous variable, such as the return on an investment, is simply the estimated variance of the variable, or equivalently the square root of the variance, called the standard deviation. Another measure in finance, one which views upside risk as unimportant compared to downside risk, is the downside beta. In the context of a binary variable, a simple s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consistency (statistics)
In statistics, consistency of procedures, such as computing confidence intervals or conducting hypothesis tests, is a desired property of their behaviour as the number of items in the data set to which they are applied increases indefinitely. In particular, consistency requires that as the dataset size increases, the outcome of the procedure approaches the correct outcome. (entries for consistency, consistent estimator, consistent test) Use of the term in statistics derives from Sir Ronald Fisher in 1922. Use of the terms ''consistency'' and ''consistent'' in statistics is restricted to cases where essentially the same procedure can be applied to any number of data items. In complicated applications of statistics, there may be several ways in which the number of data items may grow. For example, records for rainfall within an area might increase in three ways: records for additional time periods; records for additional sites with a fixed area; records for extra sites obtained by ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Naive Bayes Classifier
In statistics, naive (sometimes simple or idiot's) Bayes classifiers are a family of " probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. In other words, a naive Bayes model assumes the information about the class provided by each variable is unrelated to the information from the others, with no information shared between the predictors. The highly unrealistic nature of this assumption, called the naive independence assumption, is what gives the classifier its name. These classifiers are some of the simplest Bayesian network models. Naive Bayes classifiers generally perform worse than more advanced models like logistic regressions, especially at quantifying uncertainty (with naive Bayes models often producing wildly overconfident probabilities). However, they are highly scalable, requiring only one parameter for each feature or predictor in a learning problem. Maximum-likelihood training can be done by evaluating a c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayes Error Rate
In statistical classification, Bayes error rate is the lowest possible error rate for any classifier of a random outcome (into, for example, one of two categories) and is analogous to the irreducible error.K. Tumer, K. (1996) "Estimating the Bayes error rate through classifier combining" in ''Proceedings of the 13th International Conference on Pattern Recognition'', Volume 2, 695–699 A number of approaches to the estimation of the Bayes error rate exist. One method seeks to obtain analytical bounds which are inherently dependent on distribution parameters, and hence difficult to estimate. Another approach focuses on class densities, while yet another method combines and compares various classifiers. The Bayes error rate finds important use in the study of patterns and machine learning techniques. Definition Mohri, Rostamizadeh and Talwalkar define it as :''Given a distribution \mathcal D over \mathcal X \times \mathcal Y, the Bayes error R^* is defined as the infimum of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fubini's Theorem
In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is Lebesgue integrable on a rectangle X\times Y, then one can evaluate the double integral as an iterated integral:\, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty. This formula is generally not true for the Riemann integral, but it is true if the function is continuous on the rectangle. In multivariable calculus, this weaker result is sometimes also called Fubini's theorem, although it was already known by Leonhard Euler. Tonelli's theorem, introduced by Leonida Tonelli in 1909, is similar but is applied to a non-negative measurable function rather than to an integrable function over its domain. The Fubini and Tonelli theorems are usually combined and for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Statistics
Bayesian statistics ( or ) is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials. More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution. Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. For example, in Bayesian inference, Bayes' theorem can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |