HOME



picture info

Bayes' Rule
Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting conditional probabilities, allowing one to find the probability of a cause given its effect. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to someone of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the person is typical of the population as a whole. Based on Bayes' law, both the prevalence of a disease in a given population and the error rate of an infectious disease test must be taken into account to evaluate the meaning of a positive test result and avoid the '' base-rate fallacy''. One of Bayes' theorem's many applications is Bayesian inference, an approach to statistical inference, where it is used to invert the probability of observations given a model configuration (i.e., the likelihood function) to obtain the probability o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thomas Bayes
Thomas Bayes ( , ; 7 April 1761) was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem. Bayes never published what would become his most famous accomplishment; his notes were edited and published posthumously by Richard Price. Biography Thomas Bayes was the son of London Presbyterian minister Joshua Bayes, and was possibly born in Hertfordshire. He came from a prominent Nonconformist (Protestantism), nonconformist family from Sheffield. In 1719, he enrolled at the University of Edinburgh to study logic and theology. On his return around 1722, he assisted his father at the latter's chapel in London before moving to Royal Tunbridge Wells, Tunbridge Wells, Kent, around 1734. There he was minister of the Mount Sion Chapel, until 1752. He is known to have published two works in his lifetime, one theological and one mathematical: #''Divine Benevolence, or an Attempt to P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bayesian Probability
Bayesian probability ( or ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, relevant data (evidence). The Bayesian interpretation provides a standard set of procedur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marginal Probability
In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables in the subset without reference to the values of the other variables. This contrasts with a conditional distribution, which gives the probabilities contingent upon the values of the other variables. Marginal variables are those variables in the subset of variables being retained. These concepts are "marginal" because they can be found by summing values in a table along rows or columns, and writing the sum in the margins of the table. The distribution of the marginal variables (the marginal distribution) is obtained by marginalizing (that is, focusing on the sums in the margin) over the distribution of the variables being discarded, and the discarded variables are said to have been marginalized out. The context here is that the theoretic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prior Probability
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Likelihood Function
A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations. When evaluated on the actual data points, it becomes a function solely of the model parameters. In maximum likelihood estimation, the argument that maximizes the likelihood function serves as a point estimate for the unknown parameter, while the Fisher information (often approximated by the likelihood's Hessian matrix at the maximum) gives an indication of the estimate's precision. In contrast, in Bayesian statistics, the estimate of interest is the ''converse'' of the likelihood, the so-called posterior probability of the parameter given the observed data, which is calculated via Bayes' rule. Definition The likelihood function, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional Probability
In probability theory, conditional probability is a measure of the probability of an Event (probability theory), event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This particular method relies on event A occurring with some sort of relationship with another event B. In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Event (probability Theory)
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. An event consisting of only a single outcome is called an or an ; that is, it is a singleton set. An event that has more than one possible outcome is called a compound event. An event S is said to if S contains the outcome x of the experiment (or trial) (that is, if x \in S). The probability (with respect to some probability measure) that an event S occurs is the probability that S contains the outcome x of an experiment (that is, it is the probability that x \in S). An event defines a complementary event, namely the complementary set (the event occurring), and together these define a Bernoulli trial: did the event occur or not? Typically, when the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Edward Arnold (publisher)
Edward Arnold Publishers Ltd is a British publishing house with its head office in London. The firm had published books for over 100 years. It was acquired by Hodder & Stoughton in 1987 and became part of the Hodder Education group in 2001. In 2006, Hodder Arnold sold its academic journals to SAGE Publications. In 2009, Hodder Education sold its higher education lists in Media and Communications, History and English Literature, including many Arnold titles, to Bloomsbury Academic. In 2012, Hodder Education sold its medical and higher education lines, including the remainder of Arnold, to Taylor & Francis. Edward Arnold published books and journals for students, academics and professionals. Founder Edward Augustus Arnold was born in Truro on 15 July 1857. His grandfather was Thomas Arnold and his uncle Matthew Arnold. He was educated at Eton and Hertford College, Oxford. From 1883 he worked as a magazine editor for the firm of Richard Bentley and from 1887 edited '' Murray' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yale University Press
Yale University Press is the university press of Yale University. It was founded in 1908 by George Parmly Day and Clarence Day, grandsons of Benjamin Day, and became a department of Yale University in 1961, but it remains financially and operationally autonomous. , Yale University Press publishes approximately 300 new hardcover A hardcover, hard cover, or hardback (also known as hardbound, and sometimes as casebound (At p. 247.)) book is one bookbinding, bound with rigid protective covers (typically of binder's board or heavy paperboard covered with buckram or other clo ... and 150 new paperback books annually and has a backlist of about 5,000 books in print. Its books have won five National Book Awards, two National Book Critics Circle Awards and eight Pulitzer Prizes. The press maintains offices in New Haven, Connecticut and London, England. Yale is the only American university press with a full-scale publishing operation in Europe. It was a co-founder of the dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nicholas Saunderson
Nicholas Saunderson (20 January 1682 – 19 April 1739) was a blind English scientist and mathematician. According to one historian of statistics, he may have been the earliest discoverer of Bayes' theorem. He worked as Lucasian Professor of Mathematics at Cambridge University, a post also held by Isaac Newton, Charles Babbage and Stephen Hawking. Biography Saunderson was born at Thurlstone, Yorkshire, in January 1682. His parents were John and Ann Sanderson (or Saunderson), and his father made a living as an excise man. When he was about a year old, he lost his sight through smallpox; but this did not prevent him from learning arithmetic through assisting his father. As a child, he is also thought to have learnt to read by tracing the engravings on tombstones around St John the Baptist Church in Penistone with his fingers. His early education was at the free school, Penistone Grammar School where he learnt French, Latin and Greek, taught by then-headmaster Nathan Stani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen Stigler
Stephen Mack Stigler (born August 10, 1941) is the Ernest DeWitt Burton Distinguished Service Professor at the Department of Statistics of the University of Chicago. He has authored several books on the history of statistics; he is the son of the economist George Stigler. Stigler is also known for Stigler's law of eponymy which states that no scientific discovery is named after its original discoverer – whose first formulation he credits to sociologist Robert K. Merton. Biography Stigler was born in Minneapolis. He received his Ph.D. in 1967 from the University of California, Berkeley. His dissertation was on linear functions of order statistics, and his advisor was Lucien Le Cam. His research has focused on statistical theory of robust estimators and the history of statistics. Stigler taught at University of Wisconsin–Madison until 1979 when he joined the University of Chicago. In 2006, he was elected to membership of the American Philosophical Society, and is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]