Algebraic Independence
   HOME
*





Algebraic Independence
In abstract algebra, a subset S of a field L is algebraically independent over a subfield K if the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K. In particular, a one element set \ is algebraically independent over K if and only if \alpha is transcendental over K. In general, all the elements of an algebraically independent set S over K are by necessity transcendental over K, and over all of the field extensions over K generated by the remaining elements of S. Example The two real numbers \sqrt and 2\pi+1 are each transcendental numbers: they are not the roots of any nontrivial polynomial whose coefficients are rational numbers. Thus, each of the two singleton sets \ and \ are algebraically independent over the field \mathbb of rational numbers. However, the set \ is ''not'' algebraically independent over the rational numbers, because the nontrivial polynomial :P(x,y)=2x^2-y+1 is zero when x=\sqrt and y=2\pi+1. Algebraic independenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form category (mathematics), mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indeterminate (variable)
In mathematics, particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else except itself. It may be used as a placeholder in objects such as polynomials and formal power series. In particular: * It does not designate a constant or a parameter of the problem. * It is not an unknown that could be solved for. * It is not a variable designating a function argument, or a variable being summed or integrated over. * It is not any type of bound variable. * It is just a symbol used in an entirely formal way. When used as placeholders, a common operation is to substitute mathematical expressions (of an appropriate type) for the indeterminates. By a common abuse of language, mathematical texts may not clearly distinguish indeterminates from ordinary variables. Polynomials A polynomial in an indeterminate X is an expression of the form a_0 + a_1X + a_2X^2 + \ldots + a_nX^n, where the ''a_i'' are called the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Independence
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid Representation
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an ''F''-linear matroid (for a field ''F'') is a matroid that has a representation using a vector space over ''F''. Matroid representation theory studies the existence of representations and the properties of linear matroids. Definitions A (finite) matroid (E,\mathcal) is defined by a finite set E (the elements of the matroid) and a non-empty family \mathcal of the subsets of E, called the independent sets of the matroid. It is required to satisfy the properties that every subset of an independent set is itself independent, and that if one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's Learned society, learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College London, University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vámos Matroid
In mathematics, the Vámos matroid or Vámos cube is a matroid over a set of eight elements that cannot be represented as a matrix over any field. It is named after English mathematician Peter Vámos, who first described it in an unpublished manuscript in 1968. Definition The Vámos matroid has eight elements, which may be thought of as the eight vertices of a cube or cuboid. The matroid has rank 4: all sets of three or fewer elements are independent, and 65 of the 70 possible sets of four elements are also independent. The five exceptions are four-element circuits in the matroid. Four of these five circuits are formed by faces of the cuboid (omitting two opposite faces). The fifth circuit connects two opposite edges of the cuboid, each of which is shared by two of the chosen four faces. Another way of describing the same structure is that it has two elements for each vertex of the diamond graph, and a four-element circuit for each edge of the diamond graph. Properties *The Và ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendence Degree
In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ''L'' over ''K''. A subset ''S'' of ''L'' is a transcendence basis of ''L'' / ''K'' if it is algebraically independent over ''K'' and if furthermore ''L'' is an algebraic extension of the field ''K''(''S'') (the field obtained by adjoining the elements of ''S'' to ''K''). One can show that every field extension has a transcendence basis, and that all transcendence bases have the same cardinality; this cardinality is equal to the transcendence degree of the extension and is denoted trdeg''K'' ''L'' or trdeg(''L'' / ''K''). If no field ''K'' is specified, the transcendence degree of a field ''L'' is its degree relative to the prime field of the same characteristic, i.e., the rational numbers field Q if ''L'' is of characteristic 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]