Albert Schwarz
   HOME





Albert Schwarz
Albert Solomonovich Schwarz ( ; ; born June 24, 1934) is a Soviet and American mathematician and a theoretical physicist educated in the Soviet Union and now a professor at the University of California, Davis. Early life and education Schwarz was born in Kazan to Ashkenazi Jewish parents, Soviet Union. His parents were arrested in the Stalinist purges in 1937. Schwarz studied under Vadim Yefremovich at Ivanovo Pedagogical Institute, having been denied admittance to Moscow State University on the grounds that he was the son of "enemies of the people." Career and later life After defending his dissertation in 1958, he took a job at Voronezh University. In 1964 he was offered a job at Moscow Engineering Physics Institute. He immigrated to the United States in 1989. Contributions Schwarz is one of the pioneers of Morse theory and brought up the first example of a topological quantum field theory. The Schwarz genus, one of the fundamental notions of topological complexity, is named ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of California, Davis
The University of California, Davis (UC Davis, UCD, or Davis) is a Public university, public Land-grant university, land-grant research university in Davis, California, United States. It is the northernmost of the ten campuses of the University of California system. The institution was first founded as an Agriculture, agricultural branch of the system in 1905 and became the sixth campus of the University of California in 1959. Founded as a primarily agricultural campus, the university has expanded over the past century to include graduate and professional programs in UC Davis School of Medicine, medicine (which includes the UC Davis Medical Center), UC Davis College of Engineering, engineering, UC Davis College of Letters and Science, science, UC Davis School of Law, law, UC Davis School of Veterinary Medicine, veterinary medicine, UC Davis School of Education, education, Betty Irene Moore School of Nursing, nursing, and UC Davis Graduate School of Management, business managemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fellow
A fellow is a title and form of address for distinguished, learned, or skilled individuals in academia, medicine, research, and industry. The exact meaning of the term differs in each field. In learned society, learned or professional society, professional societies, the term refers to a privileged member who is specially elected in recognition of their work and achievements. Within institutions of higher education, a fellow is a member of a highly ranked group of teachers at a particular college or university or a member of the governing body in some universities. It can also be a specially selected postgraduate student who has been appointed to a post (called a fellowship) granting a stipend, research facilities and other privileges for a fixed period (usually one year or more) in order to undertake some advanced study or research, often in return for teaching services. In the context of medical education in North America, a fellow is a physician who is undergoing a supervised, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematicians From Kazan
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians was Thales of Miletus (); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales's theorem. The number of known mathematicians grew when Pythagoras of Samos () established the Pythagorean school, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypatia of Alexandria ( – 415). She succeed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


21st-century American Mathematicians
File:1st century collage.png, From top left, clockwise: Jesus is crucified by Roman authorities in Judaea (17th century painting). Four different men ( Galba, Otho, Vitellius, and Vespasian) claim the title of Emperor within the span of a year; The Great Fire of Rome (18th-century painting) sees the destruction of two-thirds of the city, precipitating the empire's first persecution against Christians, who are blamed for the disaster; The Roman Colosseum is built and holds its inaugural games; Roman forces besiege Jerusalem during the First Jewish–Roman War (19th-century painting); The Trưng sisters lead a rebellion against the Chinese Han dynasty (anachronistic depiction); Boudica, queen of the British Iceni leads a rebellion against Rome (19th-century statue); Knife-shaped coin of the Xin dynasty., 335px rect 30 30 737 1077 Crucifixion of Jesus rect 767 30 1815 1077 Year of the Four Emperors rect 1846 30 3223 1077 Great Fire of Rome rect 30 1108 1106 2155 Boudic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1934 Births
Events January–February * January 1 – The International Telecommunication Union, a specialist agency of the League of Nations, is established. * January 15 – The 8.0 1934 Nepal–Bihar earthquake, Nepal–Bihar earthquake strikes Nepal and Bihar with a maximum Mercalli intensity scale, Mercalli intensity of XI (''Extreme''), killing an estimated 6,000–10,700 people. * February 6 – 6 February 1934 crisis, French political crisis: The French far-right leagues rally in front of the Palais Bourbon, in an attempted coup d'état against the French Third Republic, Third Republic. * February 9 ** Gaston Doumergue forms a new government in France. ** Second Hellenic Republic, Greece, Kingdom of Romania, Romania, Turkey and Kingdom of Yugoslavia, Yugoslavia form the Balkan Pact. * February 12–February 15, 15 – Austrian Civil War: The Fatherland Front (Austria), Fatherland Front consolidates its power in a series of clashes across the country. * February 16 – The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supermanifold
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. Informal definition An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace. These local coordinates are often denoted by :(x,\theta,\bar) where ''x'' is the ( real-number-valued) spacetime coordinate, and \theta\, and \bar are Grassmann-valued spatial "directions". The physical interpretation of the Grassmann-valued coordinates are the subject of debate; explicit experimental searches for supersymmetry have not yielded any positive results. However, the use of Grassmann variables allow for the tremendous simplification of a number of important mathematical results. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Švarc–Milnor Lemma
In the mathematical subject of geometric group theory, the Švarc–Milnor lemma (sometimes also called Milnor–Švarc lemma, with both variants also sometimes spelling Švarc as Schwarz) is a statement which says that a group G, equipped with a "nice" discrete isometric action on a metric space X, is quasi-isometric to X. This result goes back, in different form, before the notion of quasi-isometry was formally introduced, to the work of Albert S. Schwarz (1955) and John Milnor (1968). Pierre de la Harpe called the Švarc–Milnor lemma "the ''fundamental observation in geometric group theory''"Pierre de la Harpe, Topics in geometric group theory'. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. ; p. 87 because of its importance for the subject. Occasionally the name "fundamental observation in geometric group theory" is now used for this statement, instead of calling it the Švarc–Milnor lemma; see, for example, Theorem 8.2 in the book ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarz-type TQFTs
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of spacet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern–Simons Theory
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form. In condensed-matter physics, Chern–Simons theory describes composite fermions and the topological order in fractional quantum Hall effect states. In mathematics, it has been used to calculate knot invariants and three-manifold invariants such as the Jones polynomial. Particularly, Chern–Simons theory is specified by a choice of simple Lie group G known as the gauge group of the theory and also a number referred to as the ''level'' of the theory, which is a constant that multiplies the action. The action is gauge dependent, however the partition function of the quantum theory is well-defined whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instanton
An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime. In such quantum theories, solutions to the equations of motion may be thought of as critical points of the action. The critical points of the action may be local maxima of the action, local minima, or saddle points. Instantons are important in quantum field theory because: * they appear in the path integral as the leading quantum corrections to the classical behavior of a system, and * they can be used to study the tunneling behavior in various systems such as a Yang–Mills theory. Relevant to dynamics, families of instantons permit that instantons, i.e. different critical points of the equation of motion, be rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




BPST Instanton
In theoretical physics, the BPST instanton is the instanton with winding number 1 found by Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin. It is a classical solution to the equations of motion of SU(2) Yang–Mills theory in Euclidean space-time (i.e. after Wick rotation), meaning it describes a transition between two different topological vacua of the theory. It was originally hoped to open the path to solving the problem of confinement, especially since Polyakov had proven in 1975 that instantons are the cause of confinement in three-dimensional compact-QED. This hope was not realized, however. Description The instanton The BPST instanton is an essentially non-perturbative classical solution of the Yang–Mills field equations. It is found when minimizing the Yang–Mills SU(2) Lagrangian density: :\mathcal L = -\frac14F_^a F_^a with ''F''μν''a'' = ∂μ''A''ν''a'' – ∂ν''A''μ''a'' + ''g''ε''abc''''A''μ''b''''A''ν''c'' the field stren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]