Apollonius Quadrilateral
   HOME



picture info

Apollonius Quadrilateral
In geometry, an Apollonius quadrilateral is a quadrilateral ABCD such that the two products of opposite side lengths are equal. That is, \overline\cdot\overline=\overline\cdot\overline. An equivalent way of stating this definition is that the cross ratio of the four points is \pm 1. It is allowed for the quadrilateral sides to cross. The Apollonius quadrilaterals are important in inversive geometry, because the property of being an Apollonius quadrilateral is preserved by Möbius transformations, and every continuous transformation of the plane that preserves all Apollonius quadrilaterals must be a Möbius transformation. Every kite is an Apollonius quadrilateral. A special case of the Apollonius quadrilaterals are the harmonic quadrilaterals; these are cyclic Apollonius quadrilaterals, inscribed in a given circle. They may be constructed by choosing two opposite vertices A and C arbitrarily on the circle, letting E be any point exterior to the circle on line AC, and setting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent Lines To Circles
In Euclidean geometry, Euclidean plane geometry, a tangent line to a circle is a Line (geometry), line that touches the circle at exactly one Point (geometry), point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical Compass and straightedge constructions, constructions and Mathematical proof, proofs. Since the tangent, tangent line to a circle at a Point (geometry), point is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonality, orthogonal circles. Tangent lines to one circle A tangent line to a circle Line-line intersection, intersects the circle at a single point . For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical Transformation (geometry), transformations, such as scaling (g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangential Quadrilateral
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex polygon, convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the Incircle and excircles of a triangle, incircle of the quadrilateral or its inscribed circle, its center is the ''incenter'' and its radius is called the ''inradius''. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called ''circumscribable quadrilaterals'', ''circumscribing quadrilaterals'', and ''circumscriptible quadrilaterals''. Tangential quadrilaterals are a special case of tangential polygons. Other less frequently used names for this class of quadrilaterals are ''inscriptable quadrilateral'', ''inscriptible quadrilateral'', ''inscribable quadrilateral'', ''circumcyclic quadrilateral'', and ''co-cyclic quadrilateral''.. Due to the risk of confusion with a qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perpendicular Bisector
In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a ''bisector''. The most often considered types of bisectors are the ''segment bisector'', a line that passes through the midpoint of a given segment, and the ''angle bisector'', a line that passes through the apex of an angle (that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the ''bisector''. Perpendicular line segment bisector Definition *The perpendicular bisector of a line segment is a line which meets the segment at its midpoint perpendicularly. *The perpendicular bisector of a line segment AB also has the property that each of its points X is equidistant from segment AB's endpoints: (D)\quad , XA, = , XB, . The proof follows from , MA, =, MB, and Pythagoras' theorem: :, XA, ^2=, XM, ^2+, MA, ^2=, XM, ^2+, MB, ^2=, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degeneracy (mathematics)
In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class; "degeneracy" is the condition of being a degenerate case. The definitions of many classes of composite or structured objects often implicitly include inequalities. For example, the angles and the side lengths of a triangle are supposed to be positive. The limiting cases, where one or several of these inequalities become equalities, are degeneracies. In the case of triangles, one has a ''degenerate triangle'' if at least one side length or angle is zero. Equivalently, it becomes a "line segment". Often, the degenerate cases are the exceptional cases where changes to the usual dimension or the cardinality of the object (or of some part of it) occur. For example, a triangle is an object of dimension two, and a degenerate triangle is contained in a line, which makes its dimension one. This is similar to the cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apollonian Circles
In geometry, Apollonian circles are two families (pencils) of circles such that every circle in the first family intersects every circle in the second family orthogonally, and vice versa. These circles form the basis for bipolar coordinates. They were discovered by Apollonius of Perga, a renowned ancient Greek geometer. Definition The Apollonian circles are defined in two different ways by a line segment denoted . Each circle in the first family (the blue circles in the figure) is associated with a positive real number , and is defined as the locus of points such that the ratio of distances from to and to equals , \left\. For values of close to zero, the corresponding circle is close to , while for values of close to , the corresponding circle is close to ; for the intermediate value , the circle degenerates to a line, the perpendicular bisector of . The equation defining these circles as a locus can be generalized to define the Fermat–Apollonius circles of larger s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apollonius Of Perga
Apollonius of Perga ( ; ) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity. Aside from geometry, Apollonius worked on numerous other topics, including astronomy. Most of this work has not survived, where exceptions are typically fragments referenced by other authors like Pappus of Alexandria. His hypothesis of eccentric orbits to explain the apparently aberrant motion of the planets, commonly believed until the Middle Ages, was superseded during the Renaissance. The Apollonius crater on the Moon is named in his honor. Life Despite his momentous contributions to the field of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Locus (geometry)
In geometry, a locus (plural: ''loci'') (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.. The set of the points that satisfy some property is often called the ''locus of a point'' satisfying this property. The use of the singular in this formulation is a witness that, until the end of the 19th century, mathematicians did not consider infinite sets. Instead of viewing lines and curves as sets of points, they viewed them as places where a point may be ''located'' or may move. History and philosophy Until the beginning of the 20th century, a geometrical shape (for example a curve) was not considered as an infinite set of points; rather, it was considered as an entity on which a point may be located or on which it moves. Thus a circle in the Euclidean plane was defined as the ''locus'' of a point that is at a given distance of a fixed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a Disk (mathematics), disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Terminology * Annulus (mathematics), Annulus: a ring-shaped object, the region bounded by two concentric circles. * Circular arc, Arc: any Connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Quadrilateral
In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertex (geometry), vertices all lie on a single circle, making the sides Chord (geometry), chords of the circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Usually the quadrilateral is assumed to be convex polygon, convex, but there are also Crossed quadrilateral, crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section Cyclic quadrilateral#Characterizations, characterizations below states what necessar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Quadrilateral
In Euclidean geometry, a harmonic quadrilateral is a quadrilateral whose four vertices lie on a circle, and whose pairs of opposite edges have equal products of lengths. Harmonic quadrilaterals have also been called harmonic quadrangles. They are the images of squares under Möbius transformations. Every triangle can be extended to a harmonic quadrilateral by adding another vertex, in three ways. The notion of Brocard points of triangles can be generalized to these quadrilaterals. Definitions and characterizations A harmonic quadrilateral is a quadrilateral that can be inscribed in a circle (a cyclic quadrilateral) and in which the products of the lengths of opposite sides are equal (an Apollonius quadrilateral). Equivalently, it is a quadrilateral that can be obtained as a Möbius transformation of the vertices of a square, as these transformations preserve both the inscribability of a square and the cross ratio of its vertices. Four points in the complex plane define a harmon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]