Anger Function
In mathematics, the Anger function, introduced by , is a function defined as : \mathbf_\nu(z)=\frac \int_0^\pi \cos (\nu\theta-z\sin\theta) \,d\theta with complex parameter \nu and complex variable \textit. It is closely related to the Bessel functions. The Weber function (also known as Lommel–Weber function), introduced by , is a closely related function defined by : \mathbf_\nu(z)=\frac \int_0^\pi \sin (\nu\theta-z\sin\theta) \,d\theta and is closely related to Bessel functions of the second kind. Relation between Weber and Anger functions The Anger and Weber functions are related by : \begin \sin(\pi \nu)\mathbf_\nu(z) &= \cos(\pi\nu)\mathbf_\nu(z)-\mathbf_(z), \\ -\sin(\pi \nu)\mathbf_\nu(z) &= \cos(\pi\nu)\mathbf_\nu(z)-\mathbf_(z), \end so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions Jν are the same as Bessel functions ''J''ν, and Weber functions can be expressed as fin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Plot Of The Anger Function J V(z) With N=2 In The Complex Plane From -2-2i To 2+2i With Colors Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the connected story elements of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz * The Plot (card game), a Patience-type card game * The Plot (film), a 2024 South Korean crime thriller film Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Bessel Function
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arises when finding separa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Eugen Von Lommel
Eugen Cornelius Joseph von Lommel (19 March 1837, Edenkoben – 19 June 1899, Munich) was a German physicist. He is notable for the Lommel polynomial, the Lommel function, the Lommel–Weber function, and the Lommel differential equation. He is also notable as the doctoral advisor of the Nobel Prize winner Johannes Stark. Lommel was born in Edenkoben in the Palatinate, Kingdom of Bavaria. He studied mathematics and physics at the University of Munich between 1854 and 1858. From 1860 to 1865 he is teacher of physics and chemistry at the canton school of Schwyz. From 1865 to 1867 he taught at the high school in Zürich and was simultaneously Privatdozent at the local university as well as at the polytechnic school. From 1867 to 1868, he was appointed professor of physics at the University of Hohenheim. Finally he was appointed to a chair of experimental physics at Erlangen Erlangen (; , ) is a Middle Franconian city in Bavaria, Germany. It is the seat of the administrativ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Plot Of The Weber Function E V(z) With N=2 In The Complex Plane From -2-2i To 2+2i With Colors Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the connected story elements of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz * The Plot (card game), a Patience-type card game * The Plot (film), a 2024 South Korean crime thriller film Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Struve Function
In mathematics, the Struve functions , are solutions of the non-homogeneous Bessel's differential equation: : x^2 \frac + x \frac + \left (x^2 - \alpha^2 \right )y = \frac introduced by . The complex number α is the order of the Struve function, and is often an integer. And further defined its second-kind version \mathbf_\alpha(x) as \mathbf_\alpha(x)=\mathbf_\alpha(x)-Y_\alpha(x), where Y_\alpha(x) is the Bessel function#Bessel functions of the second kind : Y.CE.B1, Neumann function. The modified Struve functions are equal to and are solutions of the non-homogeneous Bessel's differential equation: : x^2 \frac + x \frac - \left (x^2 + \alpha^2 \right )y = \frac And further defined its second-kind version \mathbf_\alpha(x) as \mathbf_\alpha(x)=\mathbf_\alpha(x)-I_\alpha(x), where I_\alpha(x) is the Bessel function#Modified Bessel functions: Iα, KαBessel function#Bessel functions of the second kind : Y.CE.B1, modified Bessel function. Definitions Since this is a Ordinar ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a constant called the ''center'' of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center ''c'' is equal to zero, for instance for Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Delay Differential Equation
In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with a functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs: # Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |