Abhyankar–Moh Theorem
   HOME





Abhyankar–Moh Theorem
In mathematics, the Abhyankar–Moh theorem states that if L is a complex line in the complex affine plane \mathbb^2, then every embedding of L into \mathbb^2 extends to an automorphism of the plane. It is named after Shreeram Shankar Abhyankar and Tzuong-Tsieng Moh, who published it in 1975. More generally, the same theorem applies to lines and planes over any algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra ... of characteristic zero, and to certain well-behaved subsets of higher-dimensional complex affine spaces. References *. * Theorems in algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Line
In mathematics, a complex line is a one-dimensional affine subspace of a vector space over the complex numbers. A common point of confusion is that while a complex line has complex dimension one over C (hence the term " line"), it has ordinary dimension two over the real numbers R, and is topologically equivalent to a real plane, not a real line.. The "complex plane" commonly refers to the graphical representation of the complex line on the real plane, and is thus generally synonymous with the complex line, not the complex coordinate plane. See also * Algebraic geometry * Complex vector * Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents ... References Complex geometry Complex analysis {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Plane
In geometry, an affine plane is a two-dimensional affine space. Definitions There are two ways to formally define affine planes, which are equivalent for affine planes over a field. The first way consists in defining an affine plane as a set on which a vector space of dimension two acts simply transitively. Intuitively, this means that an affine plane is a vector space of dimension two in which one has "forgotten" where the origin is. The second way occurs in incidence geometry, where an affine plane is defined as an abstract system of points and lines satisfying a system of axioms. Coordinates and isomorphism All the affine planes defined over a field are isomorphic. More precisely, the choice of an affine coordinate system (or, in the real case, a Cartesian coordinate system) for an affine plane P over a field F induces an isomorphism of affine planes between P and F^2. In the more general situation, where the affine planes are not defined over a field, they will in gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In an algebraic structure such as a group, a ring, or vector space, an ''automorphism'' is simply a bijective homomorphism of an object into itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) More generally, for an object in some category, an automorphism is a morphism of the object to itself that has an inverse morphism; that is, a morphism f: X\to X is an automorphism if there is a morphism g: X\to X such that g\circ f= f\circ g = \operatorname _X, where \operatorname _X is the identity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shreeram Shankar Abhyankar
Shreeram Shankar Abhyankar (22 July 1930 – 2 November 2012) was an Indian American mathematician known for his contributions to algebraic geometry. At the time of his death, he held the Marshall Distinguished Professor of Mathematics Chair at Purdue University, and was also a professor of computer science and industrial engineering. He is known for Abhyankar's conjecture of finite group theory. His latest research was in the area of computational and algorithmic algebraic geometry. Career Abhyankar was born during the late British Raj 22 July in a Marathi Chitpavan Brahmin family in Ujjain, Madhya Pradesh, India. He earned his B.Sc. from the Royal Institute of Science of University of Mumbai in 1951, his M.A. at Harvard University in 1952, and his Ph.D. at Harvard in 1955. His thesis, written under the direction of Oscar Zariski, was titled ''Local uniformization on algebraic surfaces over modular ground fields''. Before going to Purdue, he was an associate professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra holds for it. Every field K is contained in an algebraically closed field C, and the roots in C of the polynomials with coefficients in K form an algebraically closed field called an algebraic closure of K. Given two algebraic closures of K there are isomorphisms between them that fix the elements of K. Algebraically closed fields appear in the following chain of class inclusions: Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation x^2+1=0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crelle's Journal
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Daniel Huybrechts ( Rheinische Friedrich-Wilhelms-Universität Bonn). Past editors * 1826–1856: August Leopold Crelle * 1856–1880: Carl Wilhelm Borchardt * 1881–1888: Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a Germa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]