HOME





271 (number)
271 (two hundred ndseventy-one) is the natural number after and before . Properties 271 is a twin prime with 269, a cuban prime (a prime number that is the difference of two consecutive cubes), and a centered hexagonal number. It is the smallest prime number bracketed on both sides by numbers divisible by cubes, and the smallest prime number bracketed by numbers with five primes (counting repetitions) in their factorizations: :270=2\cdot 3^3\cdot 5 and 272=2^4\cdot 17. After 7, 271 is the second-smallest Eisenstein–Mersenne prime, one of the analogues of the Mersenne primes in the Eisenstein integers. 271 is the largest prime factor of the five-digit repunit 11111, and the largest prime number for which the decimal period of its multiplicative inverse is 5: :\frac=0.00369003690036900369\ldots It is a sexy prime In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal numbers'', and numbers used for ordering are called '' ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by succ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


269 (number)
269 (two hundred ndsixty-nine) is the natural number between 268 and 270. It is also a prime number. In mathematics 269 is a twin prime, and a Ramanujan prime. It is the largest prime factor of 9! + 1 = 362881, and the smallest natural number that cannot be represented as the determinant of a 10 × 10 (0,1)-matrix. In media * " Hawkmoon 269", pop song by U2 See also * Area code 269 * Calf 269 Calf 269 is a bull who was rescued as a calf by anonymous activists, days before his planned slaughter. He was born at an Israeli facility in the vicinity of Azor, a town on the outskirts of Tel Aviv. The slaughter was scheduled for June 2013. ..., animal liberation movement * List of highways numbered 269 References Integers {{Num-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cuban Prime
A cuban prime is a prime number that is also a solution to one of two different specific equations involving differences between third powers of two integers ''x'' and ''y''. First series This is the first of these equations: :p = \frac,\ x = y + 1,\ y>0, i.e. the difference between two successive cubes. The first few cuban primes from this equation are : 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227 The formula for a general cuban prime of this kind can be simplified to 3y^2 + 3y + 1. This is exactly the general form of a centered hexagonal number; that is, all of these cuban primes are centered hexagonal. the largest known has 65537 digits with y = 100000845^, found by Jens Kruse Andersen. Second series The second of these equations is: :p = \frac,\ x = y + 2,\ y>0. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centered Hexagonal Number
In mathematics and combinatorics, a centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following figures illustrate this arrangement for the first four centered hexagonal numbers: : Centered hexagonal numbers should not be confused with cornered hexagonal numbers, which are figurate numbers in which the associated hexagons share a vertex. The sequence of hexagonal numbers starts out as follows : : 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919. Formula The th centered hexagonal number is given by the formula :H(n) = n^3 - (n-1)^3 = 3n(n-1)+1 = 3n^2 - 3n +1. \, Expressing the formula as :H(n) = 1+6\left(\frac\right) shows that the centered hexagonal number for is 1 more than 6 times the th triangular number. In the opposite direction, the ''index'' corresponding to the centered he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If is a composite number then so is . Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form for some prime . The exponents which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... . Numbers of the form without the primality requirement may be called Mersenne numbers. Sometimes, however, Mersenne numbers are defined to have the additional requirement that be prime. The smallest composite Mersenne number with prime exponent ''n'' is . Mersenne primes were studied in antiquity because of their close connection to perfect numbers: the Euclid–Euler theorem a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Integer
In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form :z = a + b\omega , where and are integers and :\omega = \frac = e^ is a primitive (hence non-real) cube root of unity. The Eisenstein integers form a triangular lattice in the complex plane, in contrast with the Gaussian integers, which form a square lattice in the complex plane. The Eisenstein integers are a countably infinite set. Properties The Eisenstein integers form a commutative ring of algebraic integers in the algebraic number field \mathbb(\omega) — the third cyclotomic field. To see that the Eisenstein integers are algebraic integers note that each is a root of the monic polynomial :z^2 - (2a - b)\;\!z + \left(a^2 - ab + b^2\right)~. In particular, satisfies the equation :\omega^2 + \omega + 1 = 0~. The product of two Eisenstein integers and is given explicitly by :(a + b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book ''Recreations in the Theory of Numbers''. A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes. As of March 2022, the largest known prime number , the largest probable prime ''R''8177207 and the largest elliptic curve primality prime ''R''49081 are all repunits. Definition The base-''b'' repunits are defined as (this ''b'' can be either positive or negative) :R_n^\equiv 1 + b + b^2 + \cdots + b^ = \qquad\mbox, b, \ge2, n\ge1. Thus, the number ''R''''n''(''b'') consists of ''n'' copies of the digit 1 in base-''b'' representation. The first two repunits base-''b'' for ''n'' = 1 and ''n'' = 2 are :R_1^ 1 \qquad \text \qquad R_2^ b+1\qquad\text\ , b, \ge2. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Repeating Decimal
A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating (i.e. all except finitely many digits are zero). For example, the decimal representation of becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is , whose decimal becomes periodic at the ''second'' digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... At present, there is no single universally accepted notation or phrasing for repeating decimals. The infinitely repeated digit sequence is called the repetend or reptend. If the repetend is a zero, this decimal representation is called a terminating decimal rather than a repeating decimal, since the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicative Inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/''b'' is ''b''/''a''. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function ''f''(''x'') that maps ''x'' to 1/''x'', is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1). The term ''reciprocal' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sexy Prime
In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and . The term "sexy prime" is a pun stemming from the Latin word for six: . If or (where is the lower prime) is also prime, then the sexy prime is part of a prime triplet. In August 2014 the Polymath group, seeking the proof of the twin prime conjecture, showed that if the generalized Elliott–Halberstam conjecture is proven, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 6 and as such they are either twin, cousin or sexy primes. Primorial ''n''# notation As used in this article, # stands for the product 2 · 3 · 5 · 7 · … of all the primes ≤ . Types of groupings Sexy prime pairs The sexy primes (sequences and in OEIS) below 500 are: :(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]