Focal Surface
   HOME
*



picture info

Focal Surface
For a surface in three dimension the focal surface, surface of centers or evolute is formed by taking the centers of the curvature spheres, which are the tangential spheres whose radii are the reciprocals of one of the principal curvatures at the point of tangency. Equivalently it is the surface formed by the centers of the circles which osculate the curvature lines. As the principal curvatures are the eigenvalues of the second fundamental form, there are two at each point, and these give rise to two points of the focal surface on each normal direction to the surface. Away from umbilical points, these two points of the focal surface are distinct; at umbilical points the two sheets come together. When the surface has a ridge the focal surface has a cuspidal edge, three such edges pass through an elliptical umbilic and only one through a hyperbolic umbilic. At points where the Gaussian curvature is zero, one sheet of the focal surface will have a point at infinity corresponding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Umbilical Point
In the differential geometry of surfaces in three dimensions, umbilics or umbilical points are points on a surface that are locally spherical. At such points the normal curvatures in all directions are equal, hence, both principal curvatures are equal, and every tangent vector is a ''principal direction''. The name "umbilic" comes from the Latin ''umbilicus'' (navel). Umbilic points generally occur as isolated points in the elliptical region of the surface; that is, where the Gaussian curvature is positive. The sphere is the only surface with non-zero curvature where every point is umbilic. A flat umbilic is an umbilic with zero Gaussian curvature. The monkey saddle is an example of a surface with a flat umbilic and on the plane every point is a flat umbilic. A torus can have no umbilics, but every closed surface of nonzero Euler characteristic, embedded smoothly into Euclidean space, has at least one umbilic. An unproven conjecture of Constantin Carathéodory states that every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focus (optics)
In geometrical optics, a focus, also called an image point, is a point where light rays originating from a point on the object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system's aperture. Aberrations tend to worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures. An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged. The border between these is sometimes defined using a " circle of confusion" criterion. A principal focus or focal point is a special focus: * For a lens, or a spherical or parabolic mirror, it is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Confocal Quadrics
In geometry, two conic sections are called confocal, if they have the same foci. Because ellipses and hyperbolas possess two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles). Parabolas possess only one focus, so, by convention, confocal parabolas have the same focus ''and'' the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). The formal extension of the concept of confocal conics to surfaces leads to confocal quadrics. Confocal ellipses An ellipse which is not a circle is uniquely determined by its foci F_1,\; F_2 and a point not on the major axis (see the definition of an ellipse as a locus of points). The pencil of confocal ellipses with the foci F_1=(c,0),\; F_2=(-c,0) can be described by the equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE