Diapirism
   HOME
*



picture info

Diapirism
A diapir (; , ) is a type of igneous intrusion in which a more mobile and ductily deformable material is forced into brittle overlying rocks. Depending on the tectonic environment, diapirs can range from idealized mushroom-shaped Rayleigh–Taylor-instability-type structures in regions with low tectonic stress such as in the Gulf of Mexico to narrow dikes of material that move along tectonically induced fractures in surrounding rock. The term was introduced by the Romanian geologist Ludovic Mrazek, who was the first to understand the principle of salt tectonics and plasticity. The term ''diapir'' may be applied to igneous structures, but it is more commonly applied to non-igneous, relatively cold materials, such as salt domes and mud diapirs. Occurrence Differential loading causes salt deposits covered by overburden (sediment) to rise upward toward the surface and pierce the overburden, forming diapirs (including salt domes), pillars, sheets, or other geological struct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Salt Dome
A salt dome is a type of structural dome formed when salt (or other evaporite minerals) intrudes into overlying rocks in a process known as diapirism. Salt domes can have unique surface and subsurface structures, and they can be discovered using techniques such as seismic reflection. They are important in petroleum geology as they can function as petroleum traps. Formation Stratigraphically, salt basins developed periodically from the Proterozoic to the Neogene. The formation of a salt dome begins with the deposition of salt in a restricted basin. In these basins, the outflow of water exceeds inflow. More concretely, the basin loses water through evaporation, resulting in the precipitation and deposition of salt. While the rate of sedimentation of salt is significantly larger than the rate of sedimentation of clastics, it is recognized that a single evaporation event is rarely enough to produce the vast quantities of salt needed to form a layer thick enough for the for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Miranda (moon)
Miranda, also designated Uranus V, is the smallest and innermost of Uranus's five round satellites. It was discovered by Gerard Kuiper on 16 February 1948 at McDonald Observatory in Texas, and named after Miranda from William Shakespeare's play '' The Tempest''. Like the other large moons of Uranus, Miranda orbits close to its planet's equatorial plane. Because Uranus orbits the Sun on its side, Miranda's orbit is perpendicular to the ecliptic and shares Uranus' extreme seasonal cycle. At just 470 km in diameter, Miranda is one of the smallest closely observed objects in the Solar System that might be in hydrostatic equilibrium (spherical under its own gravity). The only close-up images of Miranda are from the ''Voyager 2'' probe, which made observations of Miranda during its Uranus flyby in January 1986. During the flyby, Miranda's southern hemisphere pointed towards the Sun, so only that part was studied. Miranda probably formed from an accretion disc that surrou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Salt Tectonics
upright=1.7 Salt tectonics, or halokinesis, or halotectonics, is concerned with the geometries and processes associated with the presence of significant thicknesses of evaporites containing rock salt within a stratigraphic sequence of rocks. This is due both to the low density of salt, which does not increase with burial, and its low strength. Salt structures (excluding undeformed layers of salt) have been found in more than 120 sedimentary basins around the world. Passive salt structures Structures may form during continued sedimentary loading, without any external tectonic influence, due to gravitational instability. Pure halite has a density of 2160 kg/m3. When initially deposited, sediments generally have a lower density of 2000 kg/m3, but with loading and compaction their density increases to 2500 kg/m3, which is greater than that of salt. Once the overlying layers have become denser, the weak salt layer will tend to deform into a characteristic series of ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE